Scientia Silvae Sinicae ›› 2021, Vol. 57 ›› Issue (12): 147-154.doi: 10.11707/j.1001-7488.20211215
Previous Articles Next Articles
Hengshuo Su1,Jun Lü1,*,Zhiping Ding2,Yanjie Tang3,Xudong Chen2,Qiang Zhou2,Zheyu Zhang1,Qing Yao1
Received:
2020-12-16
Online:
2021-12-25
Published:
2022-01-26
Contact:
Jun Lü
CLC Number:
Hengshuo Su,Jun Lü,Zhiping Ding,Yanjie Tang,Xudong Chen,Qiang Zhou,Zheyu Zhang,Qing Yao. Wood Identification Algorithm Based on Improved Residual Neural Network[J]. Scientia Silvae Sinicae, 2021, 57(12): 147-154.
Table 1
Identification results of cross-sectional images of 32 wood species on different models"
识别模型 Model | 平均准确率 Average accuracy(%) | 平均召回率 Average recall(%) |
VggNet16 | 71.3 | 74.2 |
GoogleNet | 81.3 | 80.3 |
DenseNet | 83.2 | 83.9 |
MobileNetv3 | 66.4 | 65.3 |
ResNet50 | 87.9 | 86.7 |
ResNet101 | 92.1 | 91.7 |
ResNet152 | 90.5 | 90.4 |
Table 2
Identification results of wood species on different ResNet101 models"
识别模型 Identification model | 平均准确率 Average accuracy(%) | 平均召回率 Average recall(%) |
ResNet101+原图 ResNet101+original image | 92.1 | 91.7 |
ResNet101+7×7分块 ResNet+7×7 blocks | 96.5 | 96.3 |
ResNet101+7×7分块+梯度加权 ResNet+7×7 blocks+gradient inverse weight | 98.8 | 99.1 |
白雪冰, 王克奇, 王辉, 等. 基于灰度共生矩阵的木材纹理分类方法的研究. 哈尔滨工业大学学报, 2005, 37 (12): 1667- 1670.
doi: 10.3321/j.issn:0367-6234.2005.12.022 |
|
Bai X B , Wang K Q , Wang H , et al. Research on the classification of wood texture based on gray level co-occurrence matrix. Journal of Harbin Institute of Technology, 2013, 37 (12): 1667- 1670. | |
白雪冰, 王克奇, 王业琴, 等. 基于BP神经网络的木材表面颜色特征分类的研究. 森林工程, 2007, 23 (1): 24- 26.
doi: 10.3969/j.issn.1001-005X.2007.01.007 |
|
Bai X B , Wang K Q , Wang Y Q , et al. Research of the feature classification of wood surface colors based on neural network. Forest Engineering, 2007, 23 (1): 24- 26.
doi: 10.3969/j.issn.1001-005X.2007.01.007 |
|
戴维. 2012. 基于纹理统计方法的木材类型识别研究. 长沙: 湖南大学. | |
Dai W. 2012. The research of wood recognition based on statistical method of grain. Changsha: Hunan University. [in Chinese] | |
郭德军, 宋蛰存. 基于灰度共生矩阵的纹理图像分类研究. 林业机械与木工设备, 2005, 33 (7): 21- 23.
doi: 10.3969/j.issn.2095-2953.2005.07.008 |
|
Guo D J , Song Z C . A study on texture images classifying based on gray-level co-occurrence matrix. Forestry Machinery & Woodworking Equipment, 2005, 33 (7): 21- 23.
doi: 10.3969/j.issn.2095-2953.2005.07.008 |
|
罗微. 2019. 基于图像多特征模式识别的木材分类分选算法研究. 哈尔滨: 东北林业大学. | |
Luo W. 2019. Research on wood classification and sorting algorithms based on image muti-feature pattern recognition. Harbin: Northeast Forestry University. [in Chinese] | |
马琳. 2013. 基于特征融合的木材纹理分类研究. 哈尔滨: 东北林业大学. | |
Ma L. 2013. Research on classification of wood texture based on feature fusion. Harbin: Northeast Forestry University. [in Chinese] | |
王晗. 2008. 木材表面纹理模式识别方法的研究. 哈尔滨: 东北林业大学. | |
Wang H. 2008. The research of pattern recognition method on wood surfacer texture. Harbin: Northeast Forestry University. [in Chinese] | |
汪杭军. 2013. 基于纹理的木材图像识别方法研究. 合肥: 中国科学技术大学. | |
Wang H J. 2013. The study of recognition methods of texture-based wood images. Hefei: University of Science and Technology of China. [in Chinese] | |
尹江苹, 蒋劲东, 高瑞清, 等. CITES公约木材树种管制及我国进口濒危木材贸易现状. 木材工业, 2019, 33 (1): 25- 28, 37. | |
Yin J P , Jiang J D , Gao R Q , et al. Current status of CITES listed timber species and relevant imports to China. China Wood Industry, 2019, 33 (1): 25- 28, 37. | |
于海鹏, 刘一星, 刘镇波, 等. 基于图像纹理特征的木材树种识别. 林业科学, 2007, 43 (4): 77- 81. | |
Yu H P , Liu Y X , Liu Z B , et al. Wood species retrieval on base of image textural features. Scientia Silvae Sinicae, 43 (4): 77- 81. | |
张怡卓, 马琳, 王铁滨, 等. 小波变换的木材纹理在线分选. 林业科技, 2012, 37 (6): 21- 24. | |
Zhang Y Z , Ma L , Wang T B , et al. Wavelet transform of wood texture online classification. Forestry Science & Technology, 2012, 37 (6): 21- 24. | |
He K , Zhang X , Ren S , et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 770- 778. | |
Howard A , Sandler M , Chu G , et al. Searching for MobileNetv3. Proceedings of the IEEE International Conference on Computer Vision, 2019, 1314- 1324. | |
Huang G , Liu Z , Van Der Maaten L , et al. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 4700- 4708. | |
Kwok N M , Wang D , Jia X , et al. Gray world based color correction and intensity preservation for image enhancement. Proceedings-4th International Congress on Image and Signal Processing, 2011, 2, 994- 998. | |
Kwon O , Lee H G , Lee M R , et al. Automatic wood species identification of Korean softwood based on convolutional neural networks. Journal of the Korean Wood Science and Technology, 2017, 45 (6): 797- 808. | |
Lew Y L. 2005. Design of an intelligent wood recognition system for the classification of tropical wood species. Johor Bahru: University Teknologi Malaysia. [in Malaysia] | |
Nurthohari Z , Murti M A , Setianingsih C , et al. Wood quality classification based on texture and fiber pattern recognition using HOG feature and SVM classifier. 2019 IEEE International Conference on Internet of Things and Intelligence System(IoTaIS), 2019, 123- 128. | |
Oktaria A S , Prakasa E , Suhartono E , et al. Wood species identification using convolutional neural network(CNN)architectures on macroscopic images. Journal of Information Technology and Computer Science, 2019, 4 (3): 274- 283.
doi: 10.25126/jitecs.201943155 |
|
Pak M , Kim S . A review of deep learning in image recognition. 2017 4th international conference on computer applications and information processing technology(CAIPT), IEEE, 2017, 1- 3. | |
Pan S J , Yang Q . A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2009, 22 (10): 1345- 1359. | |
Pramunendar R A , Supriyanto C , Novianto D H , et al. A classification method of coconut wood quality based on gray level co-occurrence matrices. 2013 International Conference on Robotics, Biomimetics, Intelligent Computational Systems, IEEE, 2013, 254- 257. | |
Ravindran P , Costa A , Soares R , et al. Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant Methods, 2018, 14, 25.
doi: 10.1186/s13007-018-0292-9 |
|
Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv: 1409. 1556[cs. cv]. https://arxiv.org/abs/1409/1556. | |
Sugiarto B , Prakasa E , Wardoyo R , et al. Wood identification based on histogram of oriented gradient(HOG) feature and support vector machine(SVM) classifier. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering(ICITISEE), IEEE, 2017, 337- 341. | |
Szegedy C , Liu W , Jia Y , et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 1- 9. | |
Tou J Y , Lau P Y , Tay Y H , et al. Computer vision-based wood recognition system. Proceedings of International Workshop on Advanced Image Technology, 2006, 26 (5): 1098- 1101. | |
Tou J Y , Tay Y H , Lau P Y , et al. A comparative study for texture classification techniques on wood species recognition problem. 2009 Fifth International Conference on Natural Computation, IEEE, 2009a, 5, 8- 12. | |
Tou J Y , Tay Y H , Lau P Y , 2009b . Rotational invariant wood species recognition through wood species verification.Proceedings. 2009 1st Asian Conference on Intelligent Information and Database Systems, 2009b, 115- 120. | |
Wang B , Wang H , Qi H , et al. Wood recognition based on grey-level co-occurrence matrix. 2010 International Conference on Computer Application and System Modeling, IEEE, 2010, 269- 272. |
[1] | Ziyu Zhao,Xiaoxia Yang,Hui Guo,Zhedong Ge,Yucheng Zhou. Recognition Method of Wood Macro- and Micro-Structure Based on Convolution Neural Network [J]. Scientia Silvae Sinicae, 2021, 57(6): 134-143. |
[2] | Bo Liu,Yuejin Fu,Xingxia Ma,Yun Lu,Lin Wang. Relationship between Wood Species Selection and Biological Diseases of Ancient Building Wooden Components in Severe Wood Biological Diseases Area [J]. Scientia Silvae Sinicae, 2021, 57(12): 108-121. |
[3] | Xiao Yuan,Yongping Chen,Qiheng Tang,Wenjing Guo. Identification of Common Wood Species of Wooden Components in Ancient Buildings Based on Micro-Destructive Testing [J]. Scientia Silvae Sinicae, 2021, 57(12): 122-131. |
[4] | Fang Xiang, Wang Haihui, Tao Junjun, Sheng Changdong. Analysis on Radiation Heat Transfer and the Associated Ignition during Forest Fire Spread [J]. Scientia Silvae Sinicae, 2019, 55(3): 97-105. |
[5] | Lingbo Dong,Hezhi Wang,Zhaogang Liu. Dynamics of Spatial Point Patterns of Different Forest Types Blocks and Associations among the Blocks in Liangshui Nature Reserve [J]. Scientia Silvae Sinicae, 2019, 55(10): 138-151. |
[6] | Yan Enping, Zhao Yunlin, Lin Hui, Mo Dengkui, Wang Guangxing. Estimation of Forest Carbon Density Based on Geostatistics and Multi-Resource Remote Sensing Data [J]. Scientia Silvae Sinicae, 2017, 53(7): 72-84. |
[7] | Liu Zihao, Wang Hangjun. Wood Identification Based on Feature Fusion of PCA and FisherTrees [J]. Scientia Silvae Sinicae, 2013, 49(6): 122-128. |
[8] | Liu Zihao, Qi Hengnian, Zhang Guangqun, Wang Hangjun. Wood Identification Method Based on Microstructure Images in Cross-Section [J]. Scientia Silvae Sinicae, 2013, 49(11): 116-121. |
[9] | Wu Yang;Zhang Dengrong;Zhang Hankui;Wu Honggan. Remote Sensing Estimation of Forest Canopy Density Combined with Texture Features [J]. Scientia Silvae Sinicae, 2012, 48(2): 48-53. |
[10] | Hong Yaping;Zhang Yabing. A New Method to Isolate Non-Enzymatically the Nucellus of Populus tomentosa [J]. Scientia Silvae Sinicae, 2010, 46(10): 183-185. |
[11] | Zhang Lifei;Jiang Xiaomei;Zhou Yin. A STUDY ON CRYSTALS IN WOOD SPECIES OF CHINESE ANGIOSPERM [J]. , 1993, 29(5): 424-428. |
[12] | Chen Jieyu. STUDY ON THE CALCULATION OF DEVIATING WEAR AND TEAR OF GUIDE BLOCK AND ITS APPLICATION [J]. , 1993, 29(2): 131-138. |
[13] | Research team of computer-aided identification of wood. COMPUTER-AIDED IDENTIFICATION FOR CHINESE HARD-WOODS [J]. , 1989, 25(3): 236-242. |
[14] | Su Zhicai. THE PATTEN OF MIXED FORESTATION AND COUNTING THE NUMBER OF SEEDLINGS [J]. , 1989, 25(1): 74-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||