Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (7): 182-191.doi: 10.11707/j.1001-7488.LYKX20240683
• Research papers • Previous Articles
Zeyu Yuan1,Hang Xu1,*(),Yi Ren2,Yang Xu1,Jianzhuang Pang1,Xiaoyun Wu1,Hanyao Zhang1,Zhiqiang Zhang1,*(
)
Received:
2024-11-15
Online:
2025-07-20
Published:
2025-07-25
Contact:
Hang Xu,Zhiqiang Zhang
E-mail:hangxu@bjfu.edu.cn;zhqzhang@bjfu.edu.cn
CLC Number:
Zeyu Yuan,Hang Xu,Yi Ren,Yang Xu,Jianzhuang Pang,Xiaoyun Wu,Hanyao Zhang,Zhiqiang Zhang. Distribution Characteristics of Vegetation Resilience and its Driving Factors in the Three-North Shelterbelt Forest Program Region from 2001 to 2021[J]. Scientia Silvae Sinicae, 2025, 61(7): 182-191.
豆天宝. 2022. 三北防护林典型工程区对生态环境的影响效应研究. 兰州: 西北师范大学. | |
Dou T B. 2022. Study on the effect of the typical project area of the Three-North Shelter Forest Program on the ecological environment. Lanzhou: Northwest Normal University. [in Chinese] | |
郭建光, 宋向阳, 席彦飞, 等. 三北防护林退化现状及成因分析——以乌拉特中旗为例. 内蒙古林业调查设计, 2024, 47 (2): 67- 71. | |
Guo J G, Song X Y, Xi Y F, et al. Current status and causes of degradation of the Three-North Shelter Forest: a case study of Urad Middle Banner. Inner Mongolia Forestry Investigation and Design, 2024, 47 (2): 67- 71. | |
国家林业和草原局. 2019. 中国森林资源报告(2014—2018年). 北京: 中国林业出版社. | |
National Forestry and Grassland Administration. 2019. Chinese forest resource report (2014–2018). Beijing: China Forestry Publishing House. [in Chinese] | |
李 锐. 山西省“三北”防护林退化林修复对策探讨. 山西林业, 2023, (3): 8- 9.
doi: 10.3969/j.issn.1005-4707.2023.03.003 |
|
Li R. Discussion on restoration strategies for degraded forests in the Three-North Shelter Forest of Shanxi Province. Forestry of Shanxi, 2023, (3): 8- 9.
doi: 10.3969/j.issn.1005-4707.2023.03.003 |
|
刘二燕, 赵媛媛, 周 蝶, 等. 科尔沁-浑善达克沙地2000—2020年土地沙化时空变化格局. 中国沙漠, 2024, 44 (4): 46- 56. | |
Liu E Y, Zhao Y Y, Zhou D, et al. Spatiotemporal variation patterns of land desertification from 2000 to 2020 in the Horqin-Otindag Sandy Land. Journal of Desert Research, 2024, 44 (4): 46- 56. | |
龙 依. 2023. 基于混合像元分解的三北地区植被覆盖度估算及时空动态研究. 长沙: 中南林业科技大学. | |
Long Y. 2023. Fractional vegetation coverage estimation and spatial-temporal dynamics analysis based on mixed pixel decomposition in the Three-North Region. Changsha: Central South University of Forestry and Technology. [in Chinese] | |
王 玲. 辽宁省“三北”防护林工程林草退化现状分析. 辽宁林业科技, 2023, (5): 32- 35.
doi: 10.3969/j.issn.1001-1714.2023.05.009 |
|
Wang L. Analysis of the current degradation status of forest and grass ecosystems under the Three-North Shelter Forest Project in Liaoning province. Liaoning Forestry Science and Technology, 2023, (5): 32- 35.
doi: 10.3969/j.issn.1001-1714.2023.05.009 |
|
王 琪. “三北”防护林工程实现跨越式转变——国家林草局完成“三北”五期工程全面评估. 国土绿化, 2022, (8): 4- 5. | |
Wang Q. Achieving a leap-forward transformation in the Three-North Shelter Forest Project: a comprehensive evaluation of its fifth phase by the National Forestry and Grassland Administration. Land Greening, 2022, (8): 4- 5. | |
王泽菡, 陈丽娟, 林心如. 基于机器学习的碳排放预测及SHAP特征分析. 科技与创新, 2024, (2): 148- 150. | |
Wang Z H, Chen L J, Lin X R. Carbon emission prediction and SHAP feature analysis based on machine learning. Science and Technology & Innovation, 2024, (2): 148- 150. | |
王肇晟. 牢记嘱托感恩奋进全力打好打赢“三北”工程攻坚战. 内蒙古林业, 2024, (6): 4- 8. | |
Wang Z S. Bearing in mind instructions and forging ahead with gratitude: striving to win the tackling battle of the Three-North Project. Inner Mongolia Forestry, 2024, (6): 4- 8. | |
张英团, 邹翠翠, 陈俊松, 等. 三北防护林工程科学绿化策略研究. 中国林业经济, 2023, (4): 27- 32. | |
Zhang Y T, Zou C C, Chen J S, et al. Research on scientific greening strategy of Three North Shelter Forest Project. China Forestry Economics, 2023, (4): 27- 32. | |
赵家培, 郭恩亮, 王永芳, 等. 基于核温度植被干旱指数的内蒙古植被生长季生态干旱监测. 应用生态学报, 2023, 34 (11): 2929- 2937. | |
Zhao J P, Guo E L, Wang Y F, et al. Ecological drought monitoring of Inner Mongolia vegetation growing season based on kernel temperature vegetation drought index (kTVDI). Chinese Journal of Applied Ecology, 2023, 34 (11): 2929- 2937. | |
郑 新. 加强三北防护林退化林分的修复. 现代园艺, 2021, 44 (12): 185- 186. | |
Zheng X. Strengthening the restoration of degraded forest stands in the Three-North Shelter Forest. Contemporary Horticulture, 2021, 44 (12): 185- 186. | |
Bleby T M, McElrone A J, Jackson R B. 2010. Water uptake and hydraulic redistribution across large woody root systems to 20 m depth. Plant, Cell & Environment, 33(12): 2132-2148. | |
Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al. A unified vegetation index for quantifying the terrestrial biosphere. Science Advances, 2021, 7 (9): eabc7447.
doi: 10.1126/sciadv.abc7447 |
|
Chen J. 2023. Unlocking the power of machine learning for Earth system modeling: a game-changing breakthrough. Global Change Biology, 29(11): 2865–2867. | |
Ciemer C, Boers N, Hirota M, et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nature Geoscience, 2019, 12 (3): 174- 179.
doi: 10.1038/s41561-019-0312-z |
|
Craine J M, Ocheltree T W, Nippert J B, et al. Global diversity of drought tolerance and grassland climate-change resilience. Nature Climate Change, 2013, 3 (1): 63- 67.
doi: 10.1038/nclimate1634 |
|
De Keersmaecker W, Lhermitte S, Tits L, et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Global Ecology and Biogeography, 2015, 24 (5): 539- 548.
doi: 10.1111/geb.12279 |
|
Feng X M, Fu B J, Piao S L, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 2016, 6 (11): 1019- 1022.
doi: 10.1038/nclimate3092 |
|
Folke C, Carpenter S, Walker B, et al. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35: 557-581. | |
Forzieri G, Dakos V, McDowell N G, et al. Emerging signals of declining forest resilience under climate change. Nature, 2022, 608 (7923): 534- 539.
doi: 10.1038/s41586-022-04959-9 |
|
Hatfield J L, Dold C. Water-use efficiency: advances and challenges in a changing climate. Frontiers in Plant Science, 2019, 10, 103.
doi: 10.3389/fpls.2019.00103 |
|
Hoek van Dijke A J, Herold M, Mallick K, et al. Shifts in regional water availability due to global tree restoration. Nature Geoscience, 2022, 15 (5): 363- 368.
doi: 10.1038/s41561-022-00935-0 |
|
Holling C S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology, Evolution, and Systematics, 4: 1-23. | |
Hoover D L, Knapp A K, Smith M D. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology, 2014, 95 (9): 2646- 2656.
doi: 10.1890/13-2186.1 |
|
Hoover D L, Pfennigwerth A A, Duniway M C. Drought resistance and resilience: The role of soil moisture–plant interactions and legacies in a dryland ecosystem. Journal of Ecology, 2021, 109 (9): 3280- 3294.
doi: 10.1111/1365-2745.13681 |
|
Houle D, Marty C, Augustin F, et al. Impact of climate change on soil hydro-climatic conditions and base cations weathering rates in forested watersheds in eastern Canada. Frontiers in Forests and Global Change, 2020, 3, 535397.
doi: 10.3389/ffgc.2020.535397 |
|
Ibáñez I, Acharya K, Juno E, et al. Forest resilience under global environmental change: Do we have the information we need? a systematic review. PLoS One, 2019, 14 (9): e0222207.
doi: 10.1371/journal.pone.0222207 |
|
Knapp A K, Beier C, Briske D D, et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience, 2008, 58 (9): 811- 821.
doi: 10.1641/B580908 |
|
Lal R. Forest soils and carbon sequestration. Forest Ecology and Management, 2005, 220 (1/2/3): 242- 258.
doi: 10.1016/j.foreco.2005.08.015 |
|
Li C J, Fu B J, Wang S, et al. Climate-driven ecological thresholds in China’s drylands modulated by grazing. Nature Sustainability, 2023, 6 (11): 1363- 1372.
doi: 10.1038/s41893-023-01187-5 |
|
Li C J, Fu B J, Wang S, et al. Drivers and impacts of changes in China’s drylands. Nature Reviews Earth & Environment, 2021, 2 (12): 858- 873. | |
Liu S, Wu L X, Zhen S Y, et al. 2024a. Terrain or climate factor dominates vegetation resilience? evidence from three national parks across different climatic zones in China. Forest Ecosystems, 11: 100212. | |
Liu X B, Liang S L, Ma H, et al. Landsat-observed changes in forest cover and attribution analysis over northern China from 1996‒2020. GIScience & Remote Sensing, 2024b, 61 (1): 2300214. | |
Lu J, Yan F Q. The divergent resistance and resilience of forest and grassland ecosystems to extreme summer drought in carbon sequestration. Land, 2023, 12 (9): 1672.
doi: 10.3390/land12091672 |
|
Lundberg S M, Erion G, Chen H, et al. From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2020, 2 (1): 56- 67.
doi: 10.1038/s42256-019-0138-9 |
|
Lundberg S M, Erion G G, Lee S I. 2018. Consistent individualized feature attribution for tree ensembles. arXiv: 1802.03888. | |
Niu Y J, Squires V, Jentsch A. Risks of China’s increased forest area. Science, 2023, 379 (6631): 447- 448. | |
Ridolfi L, D’Odorico P, Laio F. 2006. Effect of vegetation-water table feedbacks on the stability and resilience of plant ecosystems. Water Resources Research, 42(1): W01201. | |
Scheffer M, Bascompte J, Brock W A, et al. Early-warning signals for critical transitions. Nature, 2009, 461 (7260): 53- 59.
doi: 10.1038/nature08227 |
|
Scheffer M, Carpenter S, Foley J A, et al. Catastrophic shifts in ecosystems. Nature, 2001, 413 (6856): 591- 596.
doi: 10.1038/35098000 |
|
Smith T, Traxl D, Boers N. Empirical evidence for recent global shifts in vegetation resilience. Nature Climate Change, 2022, 12 (5): 477- 484.
doi: 10.1038/s41558-022-01352-2 |
|
Sun N, Liu N J, Zhao X, et al. Evaluation of spatiotemporal resilience and resistance of global vegetation responses to climate change. Remote Sensing, 2022, 14 (17): 4332.
doi: 10.3390/rs14174332 |
|
Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 1996, 379 (6567): 718- 720.
doi: 10.1038/379718a0 |
|
Wang Q, Moreno-Martínez Á, Muñoz-Marí J, et al. Estimation of vegetation traits with kernel NDVI. ISPRS Journal of Photogrammetry and Remote Sensing, 2023a, 195, 408- 417.
doi: 10.1016/j.isprsjprs.2022.12.019 |
|
Wang Z Z, Fu B J, Wu X T, et al. Vegetation resilience does not increase consistently with greening in China’s Loess Plateau. Communications Earth & Environment, 2023b, 4 (1): 336. | |
Wu J L, Yang M H, Zuo J Y, et al. Spatio-temporal evolution of ecological resilience in ecologically fragile areas and its influencing factors: a case study of the Wuling Mountains area, China. Sustainability, 2024a, 16 (9): 3671.
doi: 10.3390/su16093671 |
|
Wu X Y, Xu H, Zha T G, et al. Soil water availability induces divergent ecosystem water-use strategies to dry-heat conditions in two poplar plantations in North China. Agricultural and Forest Meteorology, 2024b, 353, 110074.
doi: 10.1016/j.agrformet.2024.110074 |
|
Xu H J, Wang X P, Zhao C Y, et al. Diverse responses of vegetation growth to meteorological drought across climate zones and land biomes in northern China from 1981 to 2014. Agricultural and Forest Meteorology, 2018, 262, 1- 13.
doi: 10.1016/j.agrformet.2018.06.027 |
|
Xu L, Mu H X, Jian S Q, et al. Study on the annual runoff change and its relationship with fractional vegetation cover and climate change in the Chinese Yellow River Basin. Water, 2024, 16 (11): 1537.
doi: 10.3390/w16111537 |
|
Yao Y, Fu B J, Liu Y X, et al. Evaluation of ecosystem resilience to drought based on drought intensity and recovery time. Agricultural and Forest Meteorology, 2022, 314, 108809.
doi: 10.1016/j.agrformet.2022.108809 |
|
Zhai J, Wang L, Liu Y, et al. Assessing the effects of China’s three-north shelter forest program over 40 years. Science of the Total Environment, 2023, 857, 159354.
doi: 10.1016/j.scitotenv.2022.159354 |
|
Zhang Y, Peng C H, Li W Z, et al. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecological Indicators, 2016, 61, 404- 412.
doi: 10.1016/j.ecolind.2015.09.041 |
|
Zhao H F, He H M, Wang J J, et al. Vegetation restoration and its environmental effects on the Loess Plateau. Sustainability, 2018, 10 (12): 4676.
doi: 10.3390/su10124676 |
|
Zhu Z C, Piao S L, Myneni R B, et al. Greening of the Earth and its drivers. Nature Climate Change, 2016, 6 (8): 791- 795.
doi: 10.1038/nclimate3004 |
[1] | Feifei Yang,Wangfei Zhang,Lei Zhao,Han Zhao,Yongjie Ji,Mengjin Wang. Two-Stage Remote Sensing Feature Optimization and GF-1 Data-Supported Forest Above-Ground Biomass Inversion [J]. Scientia Silvae Sinicae, 2025, 61(4): 9-19. |
[2] | Xiaoning Ge,Xinqiao Xu,Huaiqing Zhang,Jing Zhang,Jie Yang,Zeyu Cui,Rurao Fu,Jinjie Liang,Tianhua Zou,Linlong Wang,Yang Liu. Progress and Reflection on Genotype-Environment Interaction Algorithms in Forest Tree Breeding [J]. Scientia Silvae Sinicae, 2025, 61(3): 1-15. |
[3] | Dan Pan,Luyi Luo,Kaiwen Ji,Fanbin Kong. Impact of Rural E-Commerce Development on Intra-Regional Income Gap and Shared Prosperity in Forested Areas [J]. Scientia Silvae Sinicae, 2024, 60(5): 35-50. |
[4] | Chenchen Shen,Wenfa Xiao,Jianhua Zhu,Lixiong Zeng,Jizhen Chen,Zhilin Huang. Characterization of Soil Organic Carbon and Key Influencing Factors of Natural Forests in Central China Based on Machine Learning Algorithms [J]. Scientia Silvae Sinicae, 2024, 60(3): 65-77. |
[5] | Zhaoyan Yu,Ganping Liu,Fangdi Li,Fuliang Cao,Qirong Guo. Comparative Analysis of Embryo-Free Phenomenon and the Main Components in Seeds of Ginkgo biloba Clones [J]. Scientia Silvae Sinicae, 2023, 59(6): 12-18. |
[6] | Qiangying Jiao,Zongfu Han,Weiye Wang,Di Liu,Pengxu Pan,Bo Li,Nianci Zhang,Ping Wang,Jinhua Tao,Meng Fan. Driving Factors and Forecasting Model of Lightning-Caused Forest Fires in Daxing’ anling Mountains Based on Multi-Sources Data and Machine Learning Method [J]. Scientia Silvae Sinicae, 2023, 59(6): 74-87. |
[7] | Fanbin Kong,Mingye Cui,Caiyao Xu,Yu Lu,Yueqin Shen. Impact of the Realization of Values of Forest Ecological Products on the Urban-Rural Gap in Zhejiang Province [J]. Scientia Silvae Sinicae, 2023, 59(1): 31-43. |
[8] | Ning Wang,Yan Zhang,Zhaopeng Xia,Yaya Liu,Jiajun Pan,Yong Liu,Liang Wang. Preparation and Properties of 3D Layered Wood-Based Micro-Pressure Sensor [J]. Scientia Silvae Sinicae, 2022, 58(9): 148-156. |
[9] | Nannan Yang,Yan Bai,Suyi Jiang,Chunmei Yang,Kaihong Xu. Recognition Method of Plate and Wood Based on ALexNet Optimaization [J]. Scientia Silvae Sinicae, 2022, 58(3): 149-158. |
[10] | Jinjun Cai,Weiqian Li,Gang Chen,Yangyang Bai,Xia Wu,Tianning Wang,Yan Wu,Lang Sheng,Xingchang Zhang. Water-Holding Characteristics of the Litter Layer of Six Sparse Plantation Types in the Loess Ridge Hilly Region of Ningxia [J]. Scientia Silvae Sinicae, 2022, 58(11): 83-95. |
[11] | Juan Wu,Shuzhen Hu,Siyu Mao,Kai Zou,Qiyuan Zheng,Qihuang Qiu,Jianmin Shi. Single Leaf area Model of Phyllostachys edulis Based on Leaf Morphology [J]. Scientia Silvae Sinicae, 2020, 56(8): 47-54. |
[12] | Shouke Zhang,Linxin Fang,Yi Wang,Wei Zhang,Jinping Shu,Yangdong Wang,Haojie Wang. Evaluation Model for Resistance of Camellia oleifera to Curculio chinensis (Coleoptera: Curculionidae) Based on Fruit Properties [J]. Scientia Silvae Sinicae, 2020, 56(12): 67-74. |
[13] | Wu Ju, Chen Yu, Liu Haixuan, Xu Lijuan, Jin Guixiang, Xu Chengyang. Effects of Stand Density and Mingling Intensity on Tree Morphology in Natural Scenic Forest in Changbai Mountain [J]. Scientia Silvae Sinicae, 2018, 54(12): 12-21. |
[14] | Xing Cheng, Ding Tao, Zhou Handong, Li Zhi, Wen Liang. Influence of Size and Shape Distribution on the Flowability of Particles Emitted during Panel Cutting and Paint Sanding [J]. Scientia Silvae Sinicae, 2018, 54(12): 142-148. |
[15] | Chen Moshun, Jin Zexin, Ke Shisheng. Measurement and Analysis of Leaf Shape Variation of Carpinus tientaiensis in Different Light Environment [J]. Scientia Silvae Sinicae, 2018, 54(1): 54-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||