Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (4): 129-139.doi: 10.11707/j.1001-7488.LYKX20240144
• Research papers • Previous Articles Next Articles
Mingjia Zhang1,Boqiang Tong2,Kai Qu1,Yang Xian2,Chengcheng Cui1,Yongzheng Wang3,Yicun Zang3,Biao Han2,*()
Received:
2024-03-15
Online:
2025-04-25
Published:
2025-04-21
Contact:
Biao Han
E-mail:hanbiaook831228@163.com
CLC Number:
Mingjia Zhang,Boqiang Tong,Kai Qu,Yang Xian,Chengcheng Cui,Yongzheng Wang,Yicun Zang,Biao Han. Desiccation Sensitivity and Low-Temperature Preservation Techniques of Quercus acutissim Seeds and Embryonic Axes[J]. Scientia Silvae Sinicae, 2025, 61(4): 129-139.
Table 1
Germination indicators of seeds of Q. acutissim a treated with different moisture content"
含水量 Moisture content (%) | 实际含水量范围 Actual moisture content range (%) | 萌发率 Germination percentage (%) | 萌发指数 Germination index | 萌发时间 Germination time/d | 根长 Length of root/mm | 发霉数量 Mildew number |
34.90 | — | 93.00±0.04c | 4.36±0.04c | 7.49±1.24a | 6.59±0.43a | 1.66±0.15a |
30.00 | 29.14~30.89 | 82.00±0.02c | 4.12±1.32c | 7.81±0.80a | 7.02±0.85a | 1.66±0.15 a |
25.00 | 24.69~26.05 | 85.00±0.09c | 2.24±0.14b | 12.05±0.32ab | 6.98±1.63a | 1.00±0.00a |
20.00 | 18.32~21.35 | 42.00±0.02b | 1.94±0.06ab | 10.34±0.11a | 4.32±0.66b | 4.33±0.33c |
15.00 | 13.98~15.87 | 19.00±0.10a | 1.03±0.33a | 15.92±0.32b | 5.18±0.16ab | 3.00±0.00b |
10.00 | 8.33~12.50 | 5.00±0.01a | 0.33±0.04a | 15.45±1.79b | 2.69±0.45b | 4.33±0.33c |
Table 2
The thermal properties of Q. acutissim embryonic axes and cotyledon with different moisture content"
种子部位 Seed site | 含水量 Moisture content (%) | 冷却结晶阶段Cooling crystallisation | 加热熔融阶段Warming melt | |||||
起始温度 Onset temperature/℃ | 峰值温度 Peak temperature/℃ | 热焓 Enthalpy/(J·g?1) | 起始温度 Onset temperature/℃ | 峰值温度 Peak temperature/℃ | 热焓 Enthalpy/(J·g?1) | |||
胚轴 Embryonic axes | 10.00 | 无结晶峰No peak | ||||||
15.00 | ?34.01±5.84a | ?43.50±4.50a | 81.60±13.6a | ?80.71±67.97a | ?10.07±4.30a | 48.23±24.01a | ||
20.00 | ?32.40±2.51a | ?38.70±5.90a | 85.50±3.50a | ?19.08±0.35a | ?9.75±1.05a | 49.00±1.00a | ||
25.00 | ?31.92±4.02b | ?37.52±0.48a | 101.37±6.93a | ?17.10±0.39a | ?8.14±0.44ab | 60.11±7.88a | ||
30.00 | ?26.29±0.94b | ?28.65±3.76ab | 142.69±0.02b | ?12.62±3.57a | ?5.04±2.21ab | 75.35±2.34a | ||
55.33 | ?18.01±1.73c | ?16.30±2.72b | 358.14±13.41c | ?5.80±0.14a | ?0.67±0.11b | 143.40±6.28b | ||
子叶 Cotyledon | 10.00 | 无结晶峰No peak | ||||||
15.00 | 无结晶峰No peak | |||||||
20.00 | ?32.19±3.48a | ?29.30±1.92a | 92.30±5.84a | ?15.16±1.31a | ?7.13±0.55a | 40.05±4.51a | ||
25.00 | ?26.70±2.20ab | ?23.05±1.05ab | 114.11±2.11a | ?10.99±0.48b | ?4.33±0.22b | 42.31±6.68a | ||
30.00 | ?21.47±3.02ab | ?21.31±2.79ab | 129.11±12.89a | ?10.06±0.44bc | ?4.32±0.21b | 42.01±6.38a | ||
44.25 | ?18.00±2.21b | ?18.62±2.09b | 220.06±81.64a | ?6.69±1.18c | ?2.19±1.01b | 80.52±11.95b |
Table 3
Comparison of the mean enthalpy value of Q. acutissim embryonic axes and cotyledon"
含水量 Moisture content (%) | 胚轴热焓 Embryonic axes enthalpy/(J·g?1) | 子叶热焓 Cotyledon enthalpy/(J·g?1) | 平均热焓 Average enthalpy/(J·g?1) | |||||
冷却结晶 Cooling crystallisation | 加热熔融 Warming melt | 平均热焓 Average enthalpy | 冷却结晶 Cooling crystallisation | 加热熔融 Warming melt | 平均热焓 Average enthalpy | |||
10.00 | — | — | — | — | — | — | — | |
15.00 | 81.60 | 48.23 | 65.42 | — | — | — | — | |
20.00 | 85.50 | 49.00 | 71.75 | 92.30 | 40.05 | 71.18 | 88.90 | |
25.00 | 101.37 | 60.11 | 80.91 | 114.11 | 42.31 | 78.21 | 107.74 | |
30.00 | 142.69 | 75.35 | 109.02 | 129.11 | 42.01 | 85.56 | 135.90 | |
34.94 | 358.14 | 143.40 | 250.77 | 220.06 | 80.52 | 150.29 | 289.10 |
Table 4
Germination rate of seeds of Q. acutissim after being stored at different temperatures for 21 days with different water content"
温度 Temperature/℃ | 萌发率Germination rate (%) | |||||
初始含水量Initial moisture content | 30.00% | 25.00% | 20.00% | 15.00% | 10.00% | |
4 | 93.33±4.40a | 68.00±2.77a | 58.00±10.13b | 55.00±10.40b | 18.00±4.40b | 15.00±2.88c |
–20 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 |
–40 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 |
–80 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 |
Table 5
Germination rate and contamination rate of different sizes of embryonic axes of Q. acutissim"
胚方大小 Embryonic axis size/g | 胚方体积 Embryonic axis square volume/cm3 | 萌发率 Germination percentage(%) | 染菌率 Contamination rate(%) |
2.50~3.00 | 3.00~3.20 | 88.00±4.4a | 48.33±8.33a |
1.50~2.00 | 1.20~1.50 | 85.00±0.00a | 41.66±7.26a |
0.05~1.00 | 0.30~0.40 | 92.00±1.66a | 3.44±1.66b |
Table 6
Cryopreservation survival rates of embryonic axis with different PVS2 treatment times with Q. acutissim at different moisture content"
含水量 Moisture content (%) | 初始萌发率 Initial germination rate (%) | 超低温保存成活率Cryopreservation survival rate (%) | |||
15 min | 30 min | 45 min | 60 min | ||
10.00 | 52.00±3.33a | 0.00±0.00b | 5.00±0.02a | 0.00±0.00b | 0.00±0.00b |
15.00 | 65.00±5.00b | 0.00±0.00b | 3.00±0.33b | 0.00±0.00b | 0.00±0.00b |
20.00 | 88.00±3.33c | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b |
25.00 | 90.00±2.89c | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b |
30.00 | 92.00±1.67c | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b |
初始含水量Initial moisture content | 90.00±2.87c | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b |
冯 景, 沈永宝, 史锋厚. 银杏种子脱水敏感性的研究. 南京林业大学学报(自然科学版), 2019, 43 (6): 193- 200. | |
Feng J, Shen Y B, Shi F H. Study on desiccation sensitivity of Ginkgo biloba seeds. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43 (6): 193- 200. | |
韩 彪. 2020. 板栗种子顽拗性特征解析及贮藏研究. 北京: 北京林业大学. | |
Han B. 2020. Analysis on recalcitrant characteristics and preservation of Castanea mollissima Bl. seed. Beijing: Beijing Forestry University. [in Chinese] | |
韩 彪, 李文清, 郭素娟, 等. 基于差示扫描量热技术的板栗胚轴低温保存技术及临界含水量. 林业科学, 2020, 56 (3): 21- 27.
doi: 10.11707/j.1001-7488.20200303 |
|
Han B, Li W Q, Guo S J, et al. Cryopreservation and critical moisture content of embryo axis of Castanea mollissima based on differential scanning calorimetry. Scientia Silvae Sinicae, 2020, 56 (3): 21- 27.
doi: 10.11707/j.1001-7488.20200303 |
|
何明高, 王瑞霞, 宋希强, 等. 束花石斛种子超低温保存的研究. 云南植物研究, 2010, 32 (4): 334- 338. | |
He M G, Wang R X, Song X Q, et al. Study on cryopreservation of Dendrobium chrysanthum (Orchidaceae) seeds. Acta Botanica Yunnanica, 2010, 32 (4): 334- 338. | |
冀智清, 张存旭, 张昌胜, 等. 栓皮栎胚性组织低温保存技术研究. 西北林学院学报, 2012, 27 (6): 88- 92.
doi: 10.3969/j.issn.1001-7461.2012.06.18 |
|
Ji Z Q, Zhang C X, Zhang C S, et al. Cryopreservation of embryogenic tissues in Quercus variabilis. Journal of Northwest University, 2012, 27 (6): 88- 92.
doi: 10.3969/j.issn.1001-7461.2012.06.18 |
|
李东兴, 钱家连, 许慧慧, 等. 脱水对栓皮栎种子基因表达的影响. 东北林业大学学报, 2022, 50 (3): 1- 8.
doi: 10.3969/j.issn.1000-5382.2022.03.001 |
|
Li D X, Qian J L, Xu H H, et al. Expression analysis of genes in response to desiccation of Quercus variabilis seeds. Journal of Northeast Forestry University, 2022, 50 (3): 1- 8.
doi: 10.3969/j.issn.1000-5382.2022.03.001 |
|
李 磊, 孙雪婷, 张广辉, 等. 脱水速率对顽拗性三七种子脱水敏感性和抗氧化酶活性的影响. 种子, 2014, 33 (12): 1- 5.
doi: 10.3969/j.issn.1001-4705.2014.12.001 |
|
Li L, Sun X T, Zhang G H, et al. Effect of drying rates on the desiccation sensitivity and antioxidant enzyme activities of recalcitrant Panax notoginseng seeds. Seed, 2014, 33 (12): 1- 5.
doi: 10.3969/j.issn.1001-4705.2014.12.001 |
|
李艳林, 渠慎春, 栾雨婷, 等. 苹果茎尖超低温脱毒体系的建立. 分子植物育种, 2019, 17 (9): 2982- 2995. | |
Li Y L, Qu S C, Luan Y T, et al. Establishment of cryopreservation detoxification system of apple shoot-tips. Molecular Plant Breeding, 2019, 17 (9): 2982- 2995. | |
罗婷婷. 2017. 基于黄连种子后熟生理特性的种子保存技术的初步研究. 成都: 成都中医药大学. | |
Luo T T. 2017. A preliminary study on seed preservation technology based on post- ripening physiological characteristics of Coptis chinensis Franch. seeds. Chengdu: Chengdu University of TCM. [in Chinese] | |
田新民, 李洪立, 何 云, 等. 热带作物顽拗性种子贮藏研究进展. 热带农业科学, 2014, 34 (8): 52- 58.
doi: 10.3969/j.issn.1009-2196.2014.08.011 |
|
Tian X M, Li H L, He Y, et al. Research progress on recalcitrant seeds storage of tropical crops. Chinese Journal of Tropical Agriculture, 2014, 34 (8): 52- 58.
doi: 10.3969/j.issn.1009-2196.2014.08.011 |
|
韦树根. 2017. 桑寄生顽拗性种子生物学特性及脱水敏感性机理研究. 北京: 北京协和医学院. | |
Wei S G. 2017. Study on the biological characteristics of recalcitrant seeds and mechanisms of desiccation sensitivity of Taxillus chinensis (DC.) Danser. Beijing: Peking Union Medical College. [in Chinese] | |
文 彬. 漫话顽拗性种子. 生命世界, 2019, 11, 22- 33. | |
Wen B. Rambling stubborn seed. Life World, 2019, 11, 22- 33. | |
薛 鹏, 文 彬. 2015. 脱水速率对非洲柚种子脱水耐性的影响. 植物分类与资源学报, 37(3): 293−300. | |
Xue P, Wen B. 2015. Effects of drying rates on the desiccation tolerance of Citrus maxima ‘Feizhouyou’ seeds. Plant Diversity and Resources. 37(3): 293−300. [in Chinese] | |
闫兴富, 杜 茜, 王建礼, 等. 脱水处理对水蜡树种子萌发的影响. 种子, 2009, 28 (7): 93- 96.
doi: 10.3969/j.issn.1001-4705.2009.07.028 |
|
Yan X F, Du Q, Wang J L, et al. Efects of dehydrating treatments on seeds germination of Ligustrum obtusifolium. Seed, 2009, 28 (7): 93- 96.
doi: 10.3969/j.issn.1001-4705.2009.07.028 |
|
袁 鸣, 朱铭玮, 侯 静, 等. 利用低场核磁共振技术检测刺槐种子吸水过程水分的变化. 南京林业大学学报(自然科学版), 2022, 46 (2): 135- 142. | |
Yuan M, Zhu M W, Hou J, et al. Changes of water content in Robinia pseudoacacia seeds during imbibition by a low nuclear magnetic resonance. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46 (2): 135- 142. | |
张铭佳, 韩 彪, 朱 强, 等. 渗透处理对麻栎和栓皮栎种子生物学特性的影响. 基因组学与应用生物学, 2023, 42 (9): 927- 940. | |
Zhang M J, Han B, Zhu Q, et al. Effects of osmotic treatment on the biological properties of Quercus acutissima and Quercus variabilis’ seeds. Genomics and Applied Biology, 2023, 42 (9): 927- 940. | |
郑郁善, 陈礼光, 李庆荣, 等. 2002. 板栗种子超低温保存研究. 林业科学, 38(6): 146−149. | |
Zheng Y S, Chen L G, Li Q R, et al. 2002. Study of cryopreservation on Castanea mollissima seeds, Scientia Silvae Sinica, 38(6), 146−149. [in Chinese] | |
Al Zoubi O M, Normah M N. Critical moisture content for successful cryopreservation of embryonic axes of Fortunella polyandra determined by differential scanning calorimetry (DSC). Acta Physiologiae Plantarum, 2015, 37 (1): 1727.
doi: 10.1007/s11738-014-1727-1 |
|
Araldi C G, Coelho C M M, Gaziola S A, et al. Storage elicits a fast antioxidant enzyme activity in Araucaria angustifolia embryos. Acta Physiologiae Plantarum, 2016, 38 (8): 201.
doi: 10.1007/s11738-016-2219-2 |
|
Berjak P, Vertucci C W, Pammenter N W. Effects of developmental status and dehydration rate on characteristics of water and desiccation-sensitivity in recalcitrant seeds of Camellia sinensis. Seed Science Research, 1993, 3 (3): 155- 166.
doi: 10.1017/S0960258500001732 |
|
Ellis R H, Hong T D, Roberts E H. An intermediate category of seed storage behaviour? II. effects of provenance, immaturity, and imbibition on desiccation-tolerance in coffee. Journal of Experimental Botany, 1991, 42 (5): 653- 657.
doi: 10.1093/jxb/42.5.653 |
|
Engelmann F. Cryopreservation of embryos: an overview. Methods in Molecular Biology, 2011, 710, 155- 184. | |
Fu J R, Xia Q H, Tan L F. Effects of desiccation on excised embryonic axes of three recalcitrant seeds and studies on cryoproservation. Seed Science and Technology, 1993, 21, 85- 95. | |
ISTA. 2021. Chapter 9: determination of moisture content//International rules for seed testing, Bassersdorf. Switzerland: International Seed Testing Association. | |
Kenzo T, Ichie T, Ninomiya I, et al. Photosynthetic activity in seed wings of Dipterocarpaceae in a masting year: does wing photosynthesis contribute to reproduction?. Photosynthetica, 2003, 41 (4): 551- 557. | |
King M W, Roberts E H. 1979. The storage of recalcitrant seeds: achievements and possible approaches. Roma: IBPGR. | |
Lin L, Xu Q, Ma J C, et al. Cryopreservation of protocorm-like body-derived shoot tips of Calanthe davidii by droplet-vitrification. Cryo Letters, 2014, 35 (2): 129- 137.. | |
Pammenter N W, Berjak P, Walters C. 2000. The effect of drying rate on recalcitrant seeds: lethal water contents, causes of damage, and quantification of recalcitrance. UK: CABI Publishing, 215−221. | |
Pammenter N W, Vertucci C W, Berjak P. 1991. Homeohydrous (recalcitrant) seeds: dehydration, the state of water and viability characteristics in Landolphia kirkij. Plant Physiology, 96(4): 1093−1098. | |
Pence V C. Cryostorage of embryo axes of several large-seeded temperate tree species. Cryobiology, 1990, 27 (2): 212- 218.
doi: 10.1016/0011-2240(90)90013-T |
|
Roberts E H. Predicting the storage life of seeds. Seed Science and Technology, 1973, 1, 499- 514. | |
Spitz D R, Oberley L W. An assay for superoxide dismutase activity in mammalian tissue homogenates. Analytical Biochemistry, 1989, 179 (1): 8- 18.
doi: 10.1016/0003-2697(89)90192-9 |
|
Xia K, Daws M I, Hay F R. et al. A comparative study of desiccation responses of seeds of Asian evergreen oaks, Quercus subgenus Cyclobalanopsis and Quercus subgenus Quercus. South African Journal of Botany, 2012, 78, 47- 54.
doi: 10.1016/j.sajb.2011.05.001 |
[1] | Ming Yuan,Mingwei Zhu,Zhijun Xie,Zhen Kang,Shuxian Li. Temporal and Spatial Water Movement Pattern during the Water Loss Process in Quercus palustris Seeds [J]. Scientia Silvae Sinicae, 2024, 60(6): 44-49. |
[2] | Suping Zeng,Yueqiao Li,Ru Liu,Jia Wang,Meifang Zhao,Huacong Zhang. Effects of Dehydration Modes and Storage Time on Germination of Castanopsis sclerophyllaSeeds [J]. Scientia Silvae Sinicae, 2023, 59(3): 84-93. |
[3] | Ming Yuan,Mingwei Zhu,Zhijun Xie,Zhen Kang,Zhonghui Zhang,Shuxian Li. Changes of Water Phases during Desiccation of Quercus palustris seeds by Nuclear Magnetic Resonance [J]. Scientia Silvae Sinicae, 2023, 59(11): 42-48. |
[4] | Biao Han,Wenqing Li,Sujuan Guo,lu Lu,Xiaoman Xie. Cryopreservation and Critical Moisture Content of Embryo Axis of Castanea mollissima Based on Differential Scanning Calorimetry [J]. Scientia Silvae Sinicae, 2020, 56(3): 21-27. |
[5] | Wu Jia;Wang Yongjun;Zhang Liqin. Cryopreservation of Pinewood Nematode (Bursaphelenchus xylophilus) [J]. Scientia Silvae Sinicae, 2012, 48(5): 78-80. |
[6] | Zhai Xiaoqiao;Cheng Fei;Zhu Yanlin. Methods of Lowering Temperature for Cryopreservation of Calli of Robinia bella-rosea [J]. Scientia Silvae Sinicae, 2009, 12(10): 49-54. |
[7] | Wang Zhen;Gao Jianzhou;Liu Yan. The Adaptability of Plantlets Regenerated from Cryopreserved Shoot-Tips ofEuonymus fortunei CV.‘Yuanban’in Summer [J]. Scientia Silvae Sinicae, 2007, 43(9): 150-154. |
[8] | Wang Yue;Liu Yan. Cryopreservation of Photinia serrulata Shoot-Tips by Vitrification [J]. Scientia Silvae Sinicae, 2006, 42(12): 134-136. |
[9] | Chen Liguang;Zheng Yushan;Li Qingrong;Zhang Zhujin. Study of Cryopreservation on Cinnamomum cassia Excised Embryos [J]. Scientia Silvae Sinicae, 2005, 41(5): 38-44. |
[10] | Tao Yueliang;Zhu Cheng. Relationship among Desiccation-tolerance,Proteins and Soluble Sugars before and after Maturation of Castanea mollissima Seeds [J]. Scientia Silvae Sinicae, 2004, 40(2): 45-50. |
[11] | Zheng Yushan;Chen Liguang;Li Qingrong;Lin Zhenbin;Wu Zhuoxi. STUDY OF CRYOPRESERVATION ON CASTANEA MOLLISSIMA SEEDS [J]. Scientia Silvae Sinicae, 2002, 38(6): 146-149. |
[12] | Chen Liguang;Zheng Yushan;Qiu Erfa;Zhou Xiaohua;Wu Zhuoxi. STUDY ON METABOLIZATION CHARACTERS OF CELL MEMBRANE OF CRYOPRESERVATION MATERIALS OF CASTANOPSIS CARLESII AND C. KAWAKAMII [J]. Scientia Silvae Sinicae, 2001, 37(zk): 137-142. |
[13] | Zheng Yushan;Chen Liguang;Qiu Erfa. STUDY ON PHYSIOLOGICAL AND BIOCHEMICAL CHARACTERISTICS OF CASTANEA HENRYI SEEDS AFTER CRYOPRESERVATION [J]. Scientia Silvae Sinicae, 2001, 37(6): 39-44. |
[14] | Xu Gangbiao;Li Meie;Zheng Congyi;Yi Wen. THE STUDIES OF CRYOPRESERVATION OF CALLUS FOR MAIDENHAIR TREE(GIBGKO BILOBA L.) [J]. Scientia Silvae Sinicae, 2001, 37(3): 30-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||