Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (11): 63-74.doi: 10.11707/j.1001-7488.LYKX20230485
Previous Articles Next Articles
Wanting Ge1,2,Ying Liu2,Zhijia Zhao2,Shen Zhang3,Jie Li3,Guijuan Yang2,Guanzheng Qu1,Junhui Wang2,Wenjun Ma2,*()
Received:
2023-10-12
Online:
2024-11-25
Published:
2024-11-30
Contact:
Wenjun Ma
E-mail:.mwjlx.163@163.com
CLC Number:
Wanting Ge,Ying Liu,Zhijia Zhao,Shen Zhang,Jie Li,Guijuan Yang,Guanzheng Qu,Junhui Wang,Wenjun Ma. Prediction of Potential Distribution for Huangxin (Catalpa) in China under Different Climate Scenarios[J]. Scientia Silvae Sinicae, 2024, 60(11): 63-74.
Table 1
Twenty bioclimatic variables obtained"
代码Code | 变量因子Variable | 单位Unit |
bio1 | 年平均气温Annual mean temperature | ℃ |
bio2 | 平均气温日较差Mean diurnal range | ℃ |
bio3 | 等温性Isothermality | ℃ |
bio4 | 气温季节性变动系数Temperature seasonality | — |
bio5 | 最热月最高温度Max temperature of warmest month | ℃ |
bio6 | 最冷月最高温度Min temperature of coldest month | ℃ |
bio7 | 气温年较差Temperature annual range | ℃ |
bio8 | 最湿季平均温度Mean temperature of wettest quarter | ℃ |
bio9 | 最干季平均温度Mean temperature of driest quarter | ℃ |
bio10 | 最暖季平均温度Mean temperature of warmest quarter | ℃ |
bio11 | 最冷季平均温度Mean temperature of coldest quarter | ℃ |
bio12 | 年降水量Annual precipitation | mm |
bio13 | 最湿月降水量Precipitation of wettest month | mm |
bio14 | 最干月降水量Precipitation of driest month | mm |
bio15 | 降水量季节性变化Precipitation seasonality | — |
bio16 | 最湿季降水量Precipitation of wettest quarter | mm |
bio17 | 最干季降水量Precipitation of driest quarter | mm |
bio18 | 最暖季降水量Precipitation of warmest quarter | mm |
bio19 | 最冷季降水量Precipitation of coldest quarter | mm |
bio20(ele) | 海拔Elevation | m |
Table 2
The contribution rate and permutation importance value of environmental variables after screening"
代码 Code | 变量 Variable | 贡献率 Percent contribution (%) | 置换重要性 Permutation importance (%) |
bio14 | 最干月降水量 Precipitation of driest month | 51.1 | 79.1 |
bio20 | 海拔 Elevation | 30.2 | 6.6 |
bio3 | 等温性 Isothermality | 7.4 | 1.7 |
bio12 | 年降水量 Annual precipitation | 4.3 | 8.7 |
bio4 | 气温季节性变动系数 Temperature seasonality | 3.6 | 0.3 |
bio9 | 最干季平均温度 Mean temperature of driest quarter | 2.9 | 3.6 |
bio19 | 最冷季降水量 Precipitation of coldest quarter | 0.5 | 0 |
Table 3
Suitable growth area of Huangxin (Catalpa) in different periods km2"
时期 Period | 当前 Current | SSP1-2.6 | SSP5-8.5 | |||||
2030s | 2050s | 2070s | 2030s | 2050s | 2070s | |||
高适生区 High suitable area | 2 309 | 2 431 | 2 674 | 2 031 | 2 431 | 2 622 | 2 083 | |
中适生区 Medium suitable area | 14 288 | 14 149 | 15 486 | 15 191 | 12 969 | 14 618 | 12 552 | |
低适生区 Low suitable area | 33 819 | 47 917 | 35 313 | 32 743 | 54 913 | 39 791 | 39 184 | |
总适生区 Total suitable area | 50 416 | 64 497 | 53 473 | 49 965 | 70 313 | 57 031 | 53 819 |
蔡云锋. 2021. 云贵高原表生铁氧化物富集分配过程及其气候构造意义研究. 重庆: 西南大学. | |
Cai Y F. 2021. Enrichment and distribution of pedogenic iron oxides and its climatic and tectonic significance in Yunnan-Guizhou Plateau. Chongqing: Southwest University. [in Chinese] | |
陈 存, 丁昌俊, 黄秦军, 等. 美洲黑杨表型核心种质库构建. 林业科学研究, 2021, 34 (2): 1- 11. | |
Chen C, Ding C J, Huang Q J, et al. Construction of phenotypic core germplasm bank of American black poplar. Forest Research, 2021, 34 (2): 1- 11. | |
戴旻峻. 2022. 柳杉不同地理种源遗传变异及其潜在适生区预测. 长沙: 中南林业科技大学. | |
Dai M J. 2022. Genetic variation of Cryptomeria japonica var. sinensis from different geographic provenance and its prediction of potential suitable areas. Changsha: Central South University of Forestry and Technology. [in Chinese] | |
段义忠, 王海涛, 王 驰, 等. 气候变化下濒危植物半日花在中国的潜在分布. 植物资源与环境学报, 2020, 29 (2): 55- 68.
doi: 10.3969/j.issn.1674-7895.2020.02.07 |
|
Duan Y Z, Wang H T, Wang C, et al. Potential distribution of endangered plant Helianthemum songaricum in China under climate change. Journal of Plant Resources and Environment, 2020, 29 (2): 55- 68.
doi: 10.3969/j.issn.1674-7895.2020.02.07 |
|
樊 涵. 2022. 贵州省自然保护区空间格局与保护优先性研究. 贵阳: 贵州大学. | |
Fan H. 2022. Study on the spatial pattern and protection priority of nature reserves in Guizhou Province. Guiyang: Guizhou University. [in Chinese] | |
甘小玲, 常亚鹏, 江 原, 等. 气候变化对祁连山蒙古扁桃潜在适生区的影响. 生态学报, 2023, 43 (2): 768- 776. | |
Gan X L, Chang Y P, Jiang Y, et al. Impact of climate change on potential distribution of Amygdalus mongolica in the Qilian Mountains. Acta Ecologica Sinica, 2023, 43 (2): 768- 776. | |
刘学琴, 白 明, 贺达汉, 等. 基于MaxEnt模型的草原步甲属潜在地理分布研究. 生态学报, 2022, 42 (10): 4217- 4224. | |
Liu X Q, Bai M, He D H, et al. Simulating potential distribution of Carabus beetle in the steppe based on MaxEnt model. Acta Ecologica Sinica, 2022, 42 (10): 4217- 4224. | |
骆敬新, 王 慧, 王爱梅, 等. 气候变暖背景下中国沿海降水变化特征. 海洋通报, 2023, 42 (2): 151- 158. | |
Luo J X, Wang H, Wang A M, et al. The precipitation changes in the coastal areas of China under the background of global climate warming. Marine Science Bulletin, 2023, 42 (2): 151- 158. | |
吕振江. 2021. 全球变暖背景下杜松适生区变化及主要化学成分对环境因子的响应. 杨凌: 西北农林科技大学. | |
Lü Z J. 2021. Distribution changes of Juniperus rigida Sieb. et Zucc. under global warming and the response of major chemical components to ecological factors. Yangling: Northwest Agriculture and Forestry University. [in Chinese] | |
麻文俊, 张守攻, 王军辉, 等. 楸树新无性系木材的物理力学性质. 林业科学, 2013, 49 (9): 126- 134. | |
Ma W J, Zhang S G, Wang J H, et al. Timber physical and mechanical properties of new Catalpa bungei clones. Scientia Silvae Sinicae, 2013, 49 (9): 126- 134. | |
宁 瑶, 雷金睿, 宋希强, 等. 石灰岩特有植物海南凤仙花潜在适宜生境分布模拟. 植物生态学报, 2018, 42 (9): 946- 954.
doi: 10.17521/cjpe.2018.0066 |
|
Ning Y, Lei J R, Song X Q, et al. Modeling the potential suitable habitat of Impatiens hainanensis, a limestone-endemic plant. Chinese Journal of Plant Ecology, 2018, 42 (9): 946- 954.
doi: 10.17521/cjpe.2018.0066 |
|
帕尔曼·帕哈尔丁, 楚光明, 常亚玲, 等. 基于最大熵(MaxEnt)模型对西北地区2种红砂属植物潜在适宜区预测分析. 西北林学院学报, 2020, 35 (4): 18- 25.
doi: 10.3969/j.issn.1001-7461.2020.04.04 |
|
Perlman P, Chu G M, Chang Y L, et al. Prediction and analysis of two potential suitable areas of Reaumuria plants in northwest China based on the maximum entropy (MaxEnt) model. Journal of Northwest Forestry University, 2020, 35 (4): 18- 25.
doi: 10.3969/j.issn.1001-7461.2020.04.04 |
|
任光前. 2022. 全球变暖背景下入侵植物加拿大一枝黄花对氮沉降的生态适应及其机制. 镇江: 江苏大学. | |
Ren G Q. 2022. Ecological adaptation and mechanisms of invasive species Solidago canadensis L. to nitrogen deposition under global warming. Zhenjiang: Jiangsu University. [in Chinese] | |
任 娟. 2021. 土壤多环境梯度铁氧化物相分异与磷的耦合响应研究. 重庆: 西南大学. | |
Ren J. 2021. Coupling response of iron oxide phase differentiation and phosphorus in soils with multi-environmental gradients. Chongqing: Southwest University. [in Chinese] | |
邵雅静. 2022. 气候变化和人类活动影响下的生态系统健康时空演变特征及分区管控——以黄河流域为例. 西安: 长安大学. | |
Shao Y J. 2022. Spatial and temporal evolution characteristics of ecosystem health under the influence of climate change and human activities and zoning management: take the Yellow River basin as an example. Xi'an: Chang'an University. [in Chinese] | |
王东升, 赵 伟, 程蓓蓓, 等. 基于MaxEnt模型的中国山楂潜在适生区. 林业科学, 2022, 58 (7): 43- 50.
doi: 10.11707/j.1001-7488.20220705 |
|
Wang D S, Zhao W, Cheng B B, et al. Potential suitable areas of Crataegus pinnatifida in China based on MaxEnt modeling. Scientia Silvae Sinicae, 2022, 58 (7): 43- 50.
doi: 10.11707/j.1001-7488.20220705 |
|
王露露, 伊力哈木·亚尔买买提. 未来气候情景下2种新疆特有树种潜在适生区预测. 北京林业大学学报, 2022, 44 (6): 10- 22.
doi: 10.12171/j.1000-1522.20210301 |
|
Wang L L, Yilihamu Y. Prediction of the potential distribution of two endemic tree species in Xinjiang of western China under future climate scenarios. Journal of Beijing Forestry University, 2022, 44 (6): 10- 22.
doi: 10.12171/j.1000-1522.20210301 |
|
王 绮, 樊保国, 赵光华. 气候变化下毛榛在中国的潜在适生区预测. 生态学杂志, 2020, 39 (11): 3774- 3784. | |
Wang Q, Fan B G, Zhao G H. Prediction of potential distribution area of Corylus mandshurica in China under climate change. Chinese Journal of Ecology, 2020, 39 (11): 3774- 3784. | |
王 卫, 杨俊杰, 罗晓莹, 等. 基于MaxEnt模型的丹霞山国家级自然保护区极小种群植物丹霞梧桐的潜在生境评价. 林业科学, 2019, 55 (8): 19- 27.
doi: 10.11707/j.1001-7488.20190803 |
|
Wang W, Yang J J, Luo X Y, et al. Potential suitable areas of Crataegus pinnatifida in China based on MaxEnt modeling. Scientia Silvae Sinicae, 2019, 55 (8): 19- 27.
doi: 10.11707/j.1001-7488.20190803 |
|
王晓帆, 段雨萱, 金露露, 等. 基于优化的MaxEnt模型预测中国高山栎组植物的历史、现状与未来分布变化. 生态学报, 2023, 43 (16): 1- 15. | |
Wang X F, Duan Y X, Jin L L, et al. Prediction of historical present and future distribution of Quercus sect. Heterobalanus based on the optimized MaxEnt model in China. Acta Ecologica Sinica, 2023, 43 (16): 1- 15. | |
王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 2007, 15 (4): 365- 372.
doi: 10.3321/j.issn:1005-0094.2007.04.005 |
|
Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 2007, 15 (4): 365- 372.
doi: 10.3321/j.issn:1005-0094.2007.04.005 |
|
邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用. 生物多样性, 2011, 19 (3): 295- 302.
doi: 10.3724/SP.J.1003.2011.08318 |
|
Xing D L, Hao Z Q. The principle of maximum entropy and its applications in ecology. Biodiversity Science, 2011, 19 (3): 295- 302.
doi: 10.3724/SP.J.1003.2011.08318 |
|
徐四川, 马惜钰, 周天皓, 等. 碳排放CO2温室效应机制. 云南大学学报(自然科学版), 2023, 45 (2): 513- 522.
doi: 10.7540/j.ynu.20220373 |
|
Xu S C, Ma X Y, Zhou T H, et al. Carbon emissions CO2 greenhouse effect mechanism. Journal of Yunnan University (Natural Sciences Edition), 2023, 45 (2): 513- 522.
doi: 10.7540/j.ynu.20220373 |
|
薛惠芬, 于晓池, 付鹏跃, 等. 黄心梓木优良无性系评价与初选. 西北林学院学报, 2022, 37 (2): 108- 114.
doi: 10.3969/j.issn.1001-7461.2022.02.14 |
|
Xue H F, Yu X C, Fu P Y, et al. Evaluation and primary selection of excellent clones of Catalpa fargesii f. duclouxii. Journal of Northwest Forestry University, 2022, 37 (2): 108- 114.
doi: 10.3969/j.issn.1001-7461.2022.02.14 |
|
荀守华, 乔玉玲, 孙百友, 等. 刺槐无性系与多花刺槐杂交育种试验. 分子植物育种, 2018, 16 (5): 1660- 1667. | |
Xun S H, Qiao Y L, Sun B Y, et al. Artificial hybridization between Robinia pseudoacacia clones and Robinia neo-mexicana var. luxurians. Molecular Plant Breeding, 2018, 16 (5): 1660- 1667. | |
杨先武. 2021. 基于DEM的喀斯特峰林峰丛地形特征与空间分异研究. 南京: 南京师范大学. | |
Yang X W. 2021. DEM based research on the topographic characteristics and spatial variation of Fenglin and Fengcong Karst landforms. Nanjing: Nanjing Normal University. [in Chinese] | |
俞筱押. 2021. 喀斯特植物群落更新层繁殖体转换机制研究. 昆明: 云南师范大学. | |
Yu X Y. 2021. Trade-off between seedling and sprouting in the regeneration layer of karst plant communities. Kunming: Yunnan Normal University. [in Chinese] | |
张 超, 陈 磊, 田呈明, 等. 2016. 基于GARP和MaxEnt的云杉矮槲寄生分布区的预测. 北京林业大学学报, 38(5): 23−32. | |
Zhang C, Chen L, Tian C M, et al. 2016. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models, Journal of Beijing Forestry University, 38(5): 23−32. [in Chinese] | |
张彦静, 斯 琴, 胡 洁, 等. 气候变化情景下裸冠菊在中国的潜在适生区分布预测. 生态学报, 2023, 3 (21): 1- 14. | |
Zhang Y J, Si Q, Hu J, et al. Prediction of the potential geographical distribution of the invasive plant Gymnocoronis spilanthoides in China under climate change. Acta Ecologica Sinica, 2023, 3 (21): 1- 14. | |
张湛奇, 陈长霖. 全球变暖背景下南海动力海平面变化. 海洋通报, 2023, 42 (3): 241- 249. | |
Zhang Z Q, Chen C L. Dynamic sea level change in the south China Sea under global warming. Marine Science Bulletin, 2023, 42 (3): 241- 249. | |
赵宏亮, 程 昊, 谢沁宓, 等. 旱区6种灌木抗旱性评价及鉴定指标的筛选. 西北林学院学报, 2022, 37 (3): 24- 29.
doi: 10.3969/j.issn.1001-7461.2022.03.04 |
|
Zhao H L, Cheng H, Xie Q M, et al. Evaluation of drought resistance of six shrubs in arid area and selection of identification indexes. Journal of Northwest Forestry University, 2022, 37 (3): 24- 29.
doi: 10.3969/j.issn.1001-7461.2022.03.04 |
|
Adams J M. 2010. Vegetation-climate interaction: how plants make the global environment. 2nd ed. Germany: Springer. | |
Dai X S, Wu W, Ji L, et al. MaxEnt model-based prediction of potential distributions of Parnassia wightiana (Celastraceae) in China. Biodiversity Data Journal, 2022, 10, e81073.
doi: 10.3897/BDJ.10.e81073 |
|
Diffenbaugh N S, Field C B. Changes in ecologically critical terrestrial climate conditions. Science, 2013, 341 (6145): 486- 492.
doi: 10.1126/science.1237123 |
|
Elith J, Phillips S J, Hastie T, et al. A statistical explanation of MaxEnt for ecologists: statistical explanation of MaxEnt. Diversity and Distributions, 2011, 17 (1): 43- 57.
doi: 10.1111/j.1472-4642.2010.00725.x |
|
Ewers R M, Rodrigues A S L. Estimates of reserve effectiveness are confounded by leakage. Trends in Ecology & Evolution, 2008, 23 (3): 113- 116. | |
Fick S E, Hijmans R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 2017, 37 (12): 4302- 4315.
doi: 10.1002/joc.5086 |
|
Gedan K B, Bertness M D. Experimental warming causes rapid loss of plant diversity in New England salt marshes. Ecology Letters, 2009, 12 (8): 842- 848.
doi: 10.1111/j.1461-0248.2009.01337.x |
|
He X J, Hou E Q, Liu Y, et al. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Scientific Reports, 2016, 6, 24261.
doi: 10.1038/srep24261 |
|
Hurtt G C, Chini L, Sahajpal R, et al. Harmonization of global land use change and management for the period 850-2100 (LUH2) for CMIP6. Geoscientific Model Development, 2020, 13 (11): 5425- 5464.
doi: 10.5194/gmd-13-5425-2020 |
|
Jaynes E T. Information theory and statistical mechanics. II. Physical Review, 1957, 108 (2): 171- 190.
doi: 10.1103/PhysRev.108.171 |
|
Li J Y, Chang H, Liu T, et al. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agricultural and Forest Meteorology, 2019, 275, 243- 254.
doi: 10.1016/j.agrformet.2019.05.027 |
|
Lin L L, He J, Lyu R D, et al. Targeted conservation management of white pines in China: integrating phylogeographic structure, niche modeling, and conservation gap analyses. Forest Ecology and Management, 2021, 492, 119- 211. | |
Moritz C, Agudo R. 2013. The future of species under climate change: resilience or decline? Science, 341(6145): 504–508. | |
Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190 (3/4): 231- 259. | |
Pörtner H-O, Roberts D C, Tignor M, et al. 2022. IPCC, 2022 climate change 2022: impacts, adaptation, and vulnerability. Contribution of Working Group II (WG II) to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge and New York: Cambridge University Press. | |
Radosavljevic A, Anderson R P. Making better MaxEnt models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography, 2014, 41 (4): 629- 643.
doi: 10.1111/jbi.12227 |
|
Rahman W, Brehm J M, Maxted N, et al. Gap analyses of priority wild relatives of food crop in current ex situ and in situ conservation in Indonesia. Biodiversity and Conservation, 2021, 30 (10): 2827- 2855.
doi: 10.1007/s10531-021-02225-4 |
|
Root T L, Price J T, Hall K R, et al. Fingerprints of global warming on wild animals and plants. Nature, 2003, 421 (6918): 57- 60.
doi: 10.1038/nature01333 |
|
Stocker T F, Qin D, Plattner G-K, et al. 2013. IPCC, 2013: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press. | |
Sun Y Q, Dong S J, Liu Q G, et al. 2021. Selection of a core collection of Prunus sibirica L. germplasm by a stepwise clustering method using simple sequence repeat markers. PLoS One, 16(11): e0260097. | |
Swets J A. Measuring the accuracy of diagnostic systems. Science, 1988, 240 (4857): 1285- 1293.
doi: 10.1126/science.3287615 |
|
Thomas R K, Jerry M M, Thomas C P. 2009. Global climate change impacts in the United States. Cambridge: Cambridge University Press. | |
Vaz U L, Cunha H F, Nabout J C. 2015. Trends and biases in global scientific literature about ecological niche models. Brazilian Journal of Biology, 75(4 suppl 1): 17–24. | |
Walther G R, Post E, Convey P, et al. Ecological responses to recent climate change. Nature, 2002, 416 (6879): 389- 395.
doi: 10.1038/416389a |
|
Wang W, Li Z J, Zhang Y L, et al. Current situation, global potential distribution and evolution of six almond species in China. Frontiers in Plant Science, 2021, 12, 619883.
doi: 10.3389/fpls.2021.619883 |
|
Xiao Y, Ma W J, Lu N, et al. Genetic variation of growth traits and genotype-by-environment interactions in clones of Catalpa bungei and Catalpa fargesii f. duclouxii. Forests, 2019, 10 (1): 57.
doi: 10.3390/f10010057 |
|
Yan H Y, He J, Xu X C, et al. Prediction of potentially suitable distributions of Codonopsis pilosula in China based on an optimized MaxEnt model. Frontiers in Ecology and Evolution, 2021, 9, 773396.
doi: 10.3389/fevo.2021.773396 |
|
Yang F L, Hu J M, Wu R D. Combining endangered plants and animals as surrogates to identify priority conservation areas in Yunnan, China. Scientific Reports, 2016, 6 (1): 30753.
doi: 10.1038/srep30753 |
|
Yang J T, Huang Y, Jiang X, et al. Potential geographical distribution of the edangred plant Isoetes under human activities using MaxEnt and GARP. Global Ecology and Conservation, 2022, 38, e02186.
doi: 10.1016/j.gecco.2022.e02186 |
|
Yi Y J, Cheng X, Yang Z F, et al. MaxEnt modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, 2016, 92, 260- 269.
doi: 10.1016/j.ecoleng.2016.04.010 |
|
Zhao Y, Deng X W, Xiang W H, et al. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on MaxEnt model. Ecological Informatics, 2021, 64, 101393.
doi: 10.1016/j.ecoinf.2021.101393 |
|
Zhao Z Y, Xiao N W, Shen M, et al. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: a case study with Quasipaa boulengeri in China. Science of the Total Environment, 2022, 842, 156867.
doi: 10.1016/j.scitotenv.2022.156867 |
|
Zhu G P, Liu G P, Bu W J, et al. Ecological niche modeling and its applications in biodiversity conservation: ecological niche modeling and its applications in biodiversity conservation. Biodiversity Science, 2013, 21 (1): 90- 98.
doi: 10.3724/SP.J.1003.2013.09106 |
[1] | Yutian Zhang,Junnan Shi,Huaiqing Zhang,Binglun Wu. Spatiotemporal Patterns and Driving Forces of Vegetation Restoration and Degradation in Dongting Lake Wetland [J]. Scientia Silvae Sinicae, 2024, 60(8): 1-13. |
[2] | Lixia Chen,Feng Lu,Hongxing Jiang,Ge Sun,Xiupeng Yue,Yixuan Wang,Tong Gao,Xingbo Hu,Changqing Ding. Predicting the Distribution of Suitable Habitats for Oriental Storks Based on Satellite Tracking in Yellow River Delta [J]. Scientia Silvae Sinicae, 2024, 60(8): 46-56. |
[3] | Jiaojun Zhu,G. Geoff Wang,Huaiqing Zhang,Tian Gao. On the Research of Climate-Smart Forestry [J]. Scientia Silvae Sinicae, 2024, 60(7): 1-7. |
[4] | Zhao Zhuqi, Hu Zhenhong, He Xian, Huang Zhiqun. Research Progresses on the Dynamics of Microbial Community Establishment in Woody Debris [J]. Scientia Silvae Sinicae, 2024, 60(2): 106-117. |
[5] | Jiayan Shen,Zexin Fan,Hui Zhang,Xinhua Peng,Jinhua Li,Xiao Yu,Wenxiong Yang,Yunfang Li,Xinyu Li,Yuening Liu,Jianrong Su. Response Heterogeneity of Radial Growth of the Three Pine Species to Climate Factors in Yunnan Province [J]. Scientia Silvae Sinicae, 2024, 60(11): 48-62. |
[6] | Lei Liu,Lijuan Zhao,Jiaqi Liu,Huisheng Zhang,Zhiwei Zhang,Ruifen Huang,Ruihe Gao. Potentially Suitable Distribution Areas of Monochamus alternatus in China under Current and Future Climatic Scenarios Based on Optimized MaxEnt Model [J]. Scientia Silvae Sinicae, 2024, 60(11): 139-148. |
[7] | Panpan Xue,Ning Miao,Ximing Yue,Qiong Tao,Yuandong Zhang,Qiuhong Feng,Kangshan Mao. Divergence Phenomenon of Radial Growth of Minjiang Fir in Response to Warming at Different Slope Aspects and Elevations on the Eastern Margin of the Tibetan Plateau [J]. Scientia Silvae Sinicae, 2023, 59(7): 65-77. |
[8] | Xuelei Wei,Guogang Zhang,Ru Jia,Yunrui Ji,Hongying Xu,Zeyu Yang,Huajin Liu,Yulin Liu,Peiyu Yang. Variation of Waterbird Diversity and Its Affecting Factors in Xingkai Lake, Heilongjiang Province [J]. Scientia Silvae Sinicae, 2023, 59(6): 118-129. |
[9] | Ya Wang,Junhui Wang,Fude Wang,Yifu Liu,Cancan Tan,Yanchao Yuan,Wen Nie,Jianfeng Liu,Ermei Chang,Zirui Jia. Simulation of Suitable Distribution Areas of Picea koraiensis in China Since the Last Interglacial and Under Future Climate Scenarios [J]. Scientia Silvae Sinicae, 2023, 59(12): 1-12. |
[10] | Shuning Zhang,Junxing Chen,Dun Ao,Mei Hong,Yaqian Zhang,Fuhai Bao,Lin Wang,Tana Wuyun,Yu’e Bai,Wenquan Bao. Prediction of Potential Suitable Areas of Amygdalus pedunculata in China under Climate Change [J]. Scientia Silvae Sinicae, 2023, 59(12): 25-36. |
[11] | Liqing Si,Mingyu Wang,Feng Chen,Lifu Shu,Fengjun Zhao,Weike Li. Distribution Characteristics of Lightning and the Warning of Lightning-Caused Forest Fires [J]. Scientia Silvae Sinicae, 2023, 59(10): 1-8. |
[12] | Aijun Wang,Dongye Lu,Guosheng Zhang,Haiguang Huang,Ying Wang,Sileng Hu,Min Ao. Potential Distribution of Juniperus sabina under Climate Change in Eurasia Continent Based on MaxEnt Model [J]. Scientia Silvae Sinicae, 2021, 57(8): 43-55. |
[13] | Rui Bai,Ning Li,Shaojun Liu,Xiaomin Chen,Haiping Zou,Run Lü. Risk Analysis of White Root Disease on Rubber Trees in China under the Background of Future Climate Change [J]. Scientia Silvae Sinicae, 2021, 57(6): 37-45. |
[14] | Guanghua Zhao,Xinyue Cui,Zhi Wang,Hongli Jing,Baoguo Fan. Prediction of Potential Distribution of Ziziphus jujuba var. spinosa in China under Context of Climate Change [J]. Scientia Silvae Sinicae, 2021, 57(6): 158-168. |
[15] | Hongqun Li,Peishi Han,Changhui Niu,Xiaoqing Yuan,Ligang Xing. Impact of Climate Change on the Potential Habitat of Brown-Eared Pheasant (Crossoptilon mantchuricum), An Endemic and Endangered Animals to China [J]. Scientia Silvae Sinicae, 2021, 57(10): 102-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||