Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (11): 48-62.doi: 10.11707/j.1001-7488.LYKX20230540
Previous Articles Next Articles
Jiayan Shen1,2,3,4,Zexin Fan2,Hui Zhang2,Xinhua Peng2,Jinhua Li5,Xiao Yu5,Wenxiong Yang5,Yunfang Li6,Xinyu Li7,Yuening Liu7,Jianrong Su1,3,4,*()
Received:
2023-11-13
Online:
2024-11-25
Published:
2024-11-30
Contact:
Jianrong Su
E-mail:.jianrongsu@vip.sina.com
CLC Number:
Jiayan Shen,Zexin Fan,Hui Zhang,Xinhua Peng,Jinhua Li,Xiao Yu,Wenxiong Yang,Yunfang Li,Xinyu Li,Yuening Liu,Jianrong Su. Response Heterogeneity of Radial Growth of the Three Pine Species to Climate Factors in Yunnan Province[J]. Scientia Silvae Sinicae, 2024, 60(11): 48-62.
Table 1
Information of the sampling points and the nearest meteorological stations of three pine species"
采样点 Sampling sites | 物种 Species | 采样点信息 Sampling sites information | 气象站信息 Meteorological stations information | |||||
纬度 Latitude(°N) | 经度 Longitude(°E) | 海拔 Elevation/m | 纬度 Latitude(°N) | 经度 Longitude(°E) | 海拔 Elevation/m | |||
德钦Deqin | 高山松 Pinus densata | 28.369 | 99.132 | 28.29 | 98.55 | 3 319 | ||
云龙Yunlong | 云南松 Pinus yunnanensis | 25.865 | 99.288 | 25.54 | 99.22 | 1 659 | ||
景谷Jinggu | 思茅松 Pinus kesiya | 23.189 | 100.512 | 23.30 | 100.42 | 914 | ||
var. langbianensis |
Table 2
Statistics of tree-ring width standard chronologies (STD) and common interval analysis of each species"
统计特征 Statistic characters | 高山松 Pinus densata | 云南松 Pinus yunnanensis | 思茅松 Pinus kesiya var. langbianensis |
样本量(树/样芯)Sample size (trees/cores) | 30/50 | 51/86 | 32/56 |
年表时段 Chronology span/year | 1898—2022 | 1940—2021 | 1956—2020 |
平均生长速率 Average growth rate/(mm·a?1) | 1.440 | 3.021 | 2.458 |
平均敏感度 Mean sensitivity | 0.293 | 0.229 | 0.283 |
公共区间 Common period/year | 1954—2019 | 1968—2018 | 1973—2017 |
第一特征向量百分比 Variance in first eigenvector (%) | 21.58 | 25.57 | 33.73 |
标准差 Standard deviation | 0.163 | 0.165 | 0.249 |
一阶自相关系数 First order autocorrelation | 0.413 | 0.578 | 0.198 |
信噪比 Signal-to-noise ratio | 10.29 | 27.04 | 26.93 |
样本总体代表性 Expressed population signal | 0.911 | 0.964 | 0.964 |
邓喜庆, 皇宝林, 温庆忠, 等. 云南松林在云南的分布研究. 云南大学学报(自然科学版), 2013, 35 (6): 843- 848. | |
Deng X Q, Huang B L, Wen Q Z, et al. Distribution of Pinus yunnanensis forest in Yunnan. Journal of Yunnan University (Natural Science Edition), 2013, 35 (6): 843- 848. | |
邓喜庆, 皇宝林, 温庆忠, 等. 云南松林资源动态研究. 自然资源学报, 2014, 29 (8): 1411- 1419. | |
Deng X Q, Huang B L, Wen Q Z, et al. Dynamics of Pinus yunnanensis forest resources. Journal of Natural Resources, 2014, 29 (8): 1411- 1419. | |
金振洲, 彭 鉴. 1986. 云南松. 昆明: 云南科技出版社. | |
Jin Z Z, Peng J. 1986. Pinus yunnanensi. Kunming: Yunnan Science and Technology Press. [in Chinese] | |
李卫英, 章正仁, 辛雅萱, 等. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异. 植物生态学报, 2023, 47 (6): 833- 846. | |
Li W Y, Zhang Z R, Xin Y X, et al. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya. Chinese Journal of Plant Ecology, 2023, 47 (6): 833- 846. | |
刘世荣, 王 晖, 李海奎, 等. 碳中和目标下中国森林碳储量、碳汇变化预估与潜力提升途径. 林业科学, 2024, 60 (4): 157- 172. | |
Liu S R, Wang H, Li H K, et al. Projections of China’s forest carbon storage and sequestration and ways of their potential capacity enhancement. Scientia Silvae Sinicae, 2024, 60 (4): 157- 172. | |
毛建丰, 李 悦, 刘玉军, 等. 高山松种实性状与生殖适应性. 植物生态学报, 2007, 31 (2): 29- 299. | |
Mao J F, Li Y, Liu Y J, et al. Cone and seed characteristics of Pinus densata and their adaptive fitness implications. Chinese Journal of Plant Ecology, 2007, 31 (2): 29- 299. | |
彭新华, 杨绕琼, 尹云丽, 等. 滇西北白马雪山高山松(Pinus densata)径向生长对气候因子的响应. 生态学报, 2023, 43 (21): 8884- 8893. | |
Peng X H, Yang R Q, Yin Y L, et al. Radial growth response of Pinus densata to climate factors in Baima Snow Mountain, northwest Yunnan. Acta Ecologica Sinica, 2023, 43 (21): 8884- 8893. | |
申佳艳, 李帅锋, 黄小波, 等. 南盘江流域云南松径向生长对气候暖干化的响应. 植物生态学报, 2020, 43 (11): 946- 958. | |
Shen J Y, Li S F, Huang X B, et al. Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin. Chinese Journal of Plant Ecology, 2020, 43 (11): 946- 958. | |
申佳艳. 2021. 西南干旱对云南松径向生长的影响. 北京: 中国林业科学研究院. | |
Shen J Y. 2021. Effects of drought on radial growth of Pinus yunnanensis in southwest China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
温庆忠, 赵远藩, 陈晓鸣, 等. 中国思茅松林生态服务功能价值动态研究. 林业科学研究, 2010, 23 (5): 671- 677. | |
Wen Q Z, Zhao Y P, Chen X M, et al. Dynamic study on the values for ecological service function of Pinus kesiya forest in China. Forest Research, 2010, 23 (5): 671- 677. | |
吴祥定, 邵雪梅. 中国树木年轮气候学研究动态与展望. 地球科学进展, 1993, 8 (6): 31- 35. | |
Wu X D, Shao X M. Trends and prospects of Chinese tree ring climatology research. Advances in Earth Science, 1993, 8 (6): 31- 35. | |
吴祥定. 树木年轮分析在环境变化研究中的应用. 第四纪研究, 1990, 10 (2): 188- 196. | |
Wu X D. Application of tree ring analysis to the study on environment variation. Quaternary Sciences, 1990, 10 (2): 188- 196. | |
吴兆录. 云南松、高山松、思茅松相互关系的初步分析. 山西师大学报(自然科学版), 1993, (S2): 45- 49. | |
Wu Z L. A preliminary analysis of the relationship among Pinus yunnanensis, Pinus densata and Pinus kesiya var. langbianensis. Journal of Shanxi Normal University (Natural Science Edition), 1993, (S2): 45- 49. | |
吴兆录. 思茅松研究现状的探讨. 林业科学, 1994, 30 (2): 151- 157. | |
Wu Z L. Discussion on the research status of Pinus kesiya var. langbianensis. Scientia Silvae Sinicae, 1994, 30 (2): 151- 157. | |
吴征镒, 陈 介, 陈书坤. 1986. 云南植物志. 4卷. 北京: 科学出版社. | |
Wu Z Y, Chen J, Chen S K. 1986. Flora of Yunnan. Vol. 4. Beijing: Science Press. [in Chinese] | |
许玉兰, 蔡年辉, 陈 诗, 等. 云南松天然群体球果表型变异研究. 种子, 2018, 37 (1): 62- 67. | |
Xu Y L, Cai N H, Chen S, et al. Study on the phenotypic differentiation of cone traits among Pinus yunnanensis Franch. natural populations. Seed, 2018, 37 (1): 62- 67. | |
杨绕琼, 范泽鑫, 李宗善, 等. 滇西北玉龙雪山不同海拔云南松(Pinus yunnanensis)径向生长对气候因子的响应. 生态学报, 2018, 38 (24): 8983- 8991. | |
Yang R Q, Fan Z X, Li Z S, et al. Radial growth of Pinus yunnanensis at different elevations and their responses to climatic factors in the Yulong Snow Mountain, northwest Yunnan Province. Acta Ecologica Sinica, 2018, 38 (24): 8983- 8991. | |
张菊梅, 范泽鑫, 付培立, 等. 普达措国家公园四种针叶树径向生长对气候因子的响应. 应用生态学报, 2021, 32 (10): 3548- 3556. | |
Zhang J M, Fan Z X, Fu P L, et al. Radial growth responses of four coniferous species to climate change in the Potatso National Park, China. Chinese Journal of Applied Ecology, 2021, 32 (10): 3548- 3556. | |
张 赟, 尹定财, 田 昆, 等. 玉龙雪山不同海拔丽江云杉径向生长对气候变异的响应. 植物生态学报, 2018, 42 (6): 629- 639.
doi: 10.17521/cjpe.2018.0003 |
|
Zhang Y, Yin D C, Tian K, et al. Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China. Chinese Journal of Plant Ecology, 2018, 42 (6): 629- 639.
doi: 10.17521/cjpe.2018.0003 |
|
Adams H D, Zeppel M J B, Anderegg W R L, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 2017, 1 (9): 1285- 1291. | |
Anderegg W R L, Trugman A T, Badgley G, et al. Divergent forest sensitivity to repeated extreme droughts. Nature Climate Change, 2020, 10, 1091- 1095.
doi: 10.1038/s41558-020-00919-1 |
|
Binks O, Bryant C, Rowland L, et al. Vapour pressure deficit modulates hydraulic function and structure of tropical rainforests under nonlimiting soil water supply. New Phytologist, 2023, 240 (4): 1405- 1420.
doi: 10.1111/nph.19257 |
|
Björklund J, Seftigen K, Stoffel M, et al. Fennoscandian tree-ring anatomy shows a warmer modern than medieval climate. Nature, 2023, 620 (7972): 97- 103.
doi: 10.1038/s41586-023-06176-4 |
|
Brodribb T J, Powers J, Cochard H, et al. Hanging by a thread? forests and drought. Science, 2020, 368 (6488): 261- 266.
doi: 10.1126/science.aat7631 |
|
Bunn A G. A dendrochronology program library in R (dplR). 2008. Dendrochronologia, 26(2): 115–124. | |
Cabon A, Kannenberg S A, Arain A, et al. Cross-biome synthesis of source versus sink limits to tree growth. Science, 2022, 376 (6594): 758- 761.
doi: 10.1126/science.abm4875 |
|
Choat B, Brodribb T J, Brodersen C R, et al. Triggers of tree mortality under drought. Nature, 2018, 558 (7711): 531- 539.
doi: 10.1038/s41586-018-0240-x |
|
Choat B, Jansen S, Brodribb T J, et al. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491 (7426): 752- 755.
doi: 10.1038/nature11688 |
|
Conlisk B E, Castanha C, Germino M J, et al. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming. Journal of Ecology, 2017, 105 (15): 1347- 1357. | |
Cuny H E, Rathgeber C B K, Frank D, et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 2015, 1 (11): 15160.
doi: 10.1038/nplants.2015.160 |
|
D’Arrigo R, Wilson R, Liepert B, et al. On the ‘Divergence Problem’ in northern forests: a review of the tree-ring evidence and possible causes. Global and Planetary Change, 2008, 60 (3/4): 289- 305. | |
DeSoto L, Cailleret M, Sterck F, et al. Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 2020, 11, 545.
doi: 10.1038/s41467-020-14300-5 |
|
Dolezal J, Altman J, Jandova V, et al. Climate warming drives Himalayan alpine plant growth and recruitment dynamics. Journal of Ecology, 2020, 109 (1): 179- 190. | |
Dow C, Kim A Y, D’Orangeville L, et al. Warm springs alter timing but not total growth of temperate deciduous trees. Nature, 2022, 608 (7923): 552- 557.
doi: 10.1038/s41586-022-05092-3 |
|
Dudney J, Latimer A M, van Mantgem P J, et al. The energy–water limitation threshold explains divergent drought responses in tree growth, needle length, and stable isotope ratios. Global Change Biology, 2023, 29 (15): 4368- 4382.
doi: 10.1111/gcb.16740 |
|
Fan Z X, Bräuning A, Fu P L, et al. Intra-annual radial growth of Pinus kesiya var. langbianensis is mainly controlled by moisture availability in the Ailao Mountains, southwestern China. Forests, 2019, 10 (10): 899.
doi: 10.3390/f10100899 |
|
Fritts H C, Smith D G, Stokes M A. The biological model for paleoclimatic interpretation of Mesa Verde tree-ring series. Memoirs of the Society for American Archaeology, 1965, (19): 101- 121. | |
Fritts H C. Growth-rings of trees: their correlation with climate. Science, 1966, 154 (3752): 973- 979.
doi: 10.1126/science.154.3752.973 |
|
Fritts H C. 1976. Tree rings and climate. New York: Elsevier. | |
Forzieri G, Girardello M, Ceccherini G, et al. Emergent vulnerability to climate-driven disturbances in European forests. Nature Communications, 2021, 12, 1081.
doi: 10.1038/s41467-021-21399-7 |
|
Gaire N P, Bhuju D R, Koirala M, et al. Tree-ring based spring precipitation reconstruction in western Nepal Himalaya since AD 1840. Dendrochronologia, 2017, 42, 21- 30.
doi: 10.1016/j.dendro.2016.12.004 |
|
Gao S, Liu R S, Zhou T, et al. Dynamic responses of tree-ring growth to multiple dimensions of drought. Global Change Biology, 2018, 24 (11): 5380- 5390.
doi: 10.1111/gcb.14367 |
|
Gao S, Liang E Y, Liu R S, et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nature Ecology and Evalution, 2022, 6 (4): 397- 404.
doi: 10.1038/s41559-022-01668-4 |
|
Hammond W M, Williams A P, Abatzoglou J T, et al. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nature Communications, 2022, 13, 1761.
doi: 10.1038/s41467-022-29289-2 |
|
Harvey J E, Smiljanić M, Scharnweber T, et al. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Global Change Biology, 2019, 26 (4): 2505- 2518. | |
Holmes R L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull, 1983, 43, 51- 67. | |
Huang Y J, Mao J F, Chen Z Q, et al. Genetic structure of needle morphological and anatomical traits of Pinus yunnanensis. Journal of Forestry Research, 2016, 27 (1): 13- 25.
doi: 10.1007/s11676-015-0133-x |
|
IPCC, 2021: Summary for policymakers//Masson-Delmotte V P, Zhai A, Pirani S L, et al. eds. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 3−32. | |
Jankowski A, Wyka T P, Zytkowiak R, et al. Does climate-related in situ variability of Scots pine (Pinus sylvestris L.) needles have a genetic basis? evidence from common garden experiments. Tree Physiology, 2019, 39 (4): 573- 589.
doi: 10.1093/treephys/tpy145 |
|
Liang E Y, Dawadi B, Pederson N, et al. 2014. Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology, 95(9): 2453–2465. | |
Ma F, Zhang X W, Chen L T, et al. The alpine homoploid hybrid Pinus densata has greater cold photosynthesis tolerance than its progenitors. Environmental and Experimental Botany, 2013, 85, 85- 91.
doi: 10.1016/j.envexpbot.2012.08.005 |
|
Maher C, Nelson C R, Larson A J. Winter damage is more important than summer temperature for maintaining the krummholz growth form above alpine treeline. Journal of Ecology, 2019, 108 (3): 1074- 1087. | |
Panthi S, Bräuning A, Zhou Z K, et al. Growth response of Abies georgei to climate increases with elevation in the central Hengduan Mountains, southwestern China. Dendrochronologia, 2018, 47, 1- 9.
doi: 10.1016/j.dendro.2017.11.001 |
|
Pan Y, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world’s forests. Science, 2011, 333 (6045): 988- 993.
doi: 10.1126/science.1201609 |
|
Piao S L, Nan H J, Huntingford C, et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 2014, 5, 5018.
doi: 10.1038/ncomms6018 |
|
Pugh T A M, Lindeskog M, Smith B, et al. Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences, 2018, 116 (10): 512- 518. | |
Quesada-Román A, Ballesteros-Cánovas J A, George S S, et al. Tropical and subtropical dendrochronology: approaches, applications, and prospects. Ecological Indicators, 2022, 144 (2): 109506. | |
Ren P, Rossi S, Camarero J J, et al. Critical temperature and precipitation thresholds for the onset of xylogenesis of Juniperus przewalskii in a semi-arid area of the north-eastern Tibetan Plateau. Annals of Botany, 2018, 121 (4): 617- 624.
doi: 10.1093/aob/mcx188 |
|
Ren P, Rossi S, Gricar J, et al. 2015. Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? Annals of Botany, 115(4): 629–639. | |
Richardson A D, Keenan T F, Migliavacca M, et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 2013, 169, 156- 173.
doi: 10.1016/j.agrformet.2012.09.012 |
|
Schurman J S, Babst F, Björklund J, et al. The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biology, 2019, 25 (9): 3136- 3150.
doi: 10.1111/gcb.14721 |
|
Seddon A W R, Macias-Fauria M, Long P R, et al. Sensitivity of global terrestrial ecosystems to climate variability. Nature, 2016, 531 (7593): 229- 232.
doi: 10.1038/nature16986 |
|
Sharma B, Fan Z X, Panthi S, et al. Warming induced tree-growth decline of Toona ciliata in (sub-) tropical southwestern China. Dendrochronologia, 2022, 73, 125954. | |
Shen J Y, Li Z S, Gao C J, et al. Radial growth response of Pinus yunnanensis to rising temperature and drought stress on the Yunnan Plateau, southwestern China. Forest Ecology and Management, 2020, 474, 118357.
doi: 10.1016/j.foreco.2020.118357 |
|
Shi C M, Gao C, Zhang Y D, et al. The majority of tree growth on the monsoonal Tibetan Plateau has benefited from recent summer warming. Catena, 2021, 207 (8): 105649. | |
Smith T, Boers N. Global vegetation resilience linked to water availability and variability. Nature Communications, 2023, 14, 498.
doi: 10.1038/s41467-023-36207-7 |
|
Song W Q, Zhao B Q, Mu C C, et al. Moisture availability influences the formation and characteristics of earlywood of Pinus tabuliformis more than latewood in northern China. Agricultural and Forest Meteorology, 2022, 327 (1): 109219. | |
Stoke M A, Smiley T I J. 1996. An introduction to tree-ring dating. Chicago: The University of Chicago Press. | |
Tei S, Sugimoto A, Yonenobu H, et al. Tree-ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change. Global Change Biology, 2017, 23 (12): 5179- 5188.
doi: 10.1111/gcb.13780 |
|
Thomte L, Shah S K, Mehrotra N, et al. Influence of climate on multiple tree-ring parameters of Pinus kesiya from Manipur, northeast India. Dendrochronologia, 2022, 71, 125906.
doi: 10.1016/j.dendro.2021.125906 |
|
Trugman A T, Detto M, Bartlett M K, et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecology Letters, 2018, 21 (10): 1552- 1560.
doi: 10.1111/ele.13136 |
|
Weigel R, Muffler L, Klisz M, et al. Winter matters: sensitivity to winter climate and cold events increases towards the cold distribution margin of European beech (Fagus sylvatica L.). Journal of Biogeography, 2019, 45 (12): 2779- 2790. | |
Yang B, He M H, Shishov V, et al. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proceedings of the National Academy of Sciences, 2017, 114 (27): 6966- 6971.
doi: 10.1073/pnas.1616608114 |
|
Yang R Q, Fu P L, Fan Z X, et al. Growth-climate sensitivity of two pine species shows species-specific changes along temperature and moisture gradients in southwest China. Agricultural and Forest Meteorology, 2023, 318 (12): 108907. | |
Yang Y, Saatchi S S, Xu L, et al. Post-drought decline of the Amazon carbon sink. Nature Communications, 2018, 9, 3172- 3181.
doi: 10.1038/s41467-018-05668-6 |
|
Zang C, Biondi F. Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia, 2013, 31 (1): 68- 74.
doi: 10.1016/j.dendro.2012.08.001 |
|
Zhang X L, Lv P C, Xu C, et al. Dryness decreases average growth rate and increases drought sensitivity of Mongolia oak trees in North China. Agricultural and Forest Meteorology, 2021, 308/309 (5): 108611. | |
Zhang Y X, Wilmking M, Gou X H. Changing relationships between tree growth and climate in northwest China. Plant Ecology, 2009, 201 (1): 39- 50.
doi: 10.1007/s11258-008-9478-y |
|
Zheng L L, Gaire N P, Shi P L. High-altitude tree growth responses to climate change across the Hindu Kush Himalaya. Journal of Plant Ecology, 2021, 14 (5): 829- 842.
doi: 10.1093/jpe/rtab035 |
|
Zhou P, Huang J G, Liang H X, et al. Radial growth of Larix sibirica was more sensitive to climate at low than high altitudes in the Altai Mountains, China. Agricultural and Forest Meteorology, 2021, 304/305 (6): 108392. | |
Ziaco E, Truettner C, Biondi F, et al. Moisture-driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. Plant Cell and Environment, 2018, 41 (4): 823- 836.
doi: 10.1111/pce.13152 |
[1] | Yutian Zhang,Junnan Shi,Huaiqing Zhang,Binglun Wu. Spatiotemporal Patterns and Driving Forces of Vegetation Restoration and Degradation in Dongting Lake Wetland [J]. Scientia Silvae Sinicae, 2024, 60(8): 1-13. |
[2] | Yijun Wang,Lixin Chen,Zuosinan Chen,Zhiqiang Zhang,Hang Xu,Fei Yao,Shengnan Chen. Biophysical Control of Water Physiological Processes in Poplar under Various Nighttime Environmental Stability Conditions [J]. Scientia Silvae Sinicae, 2024, 60(8): 95-108. |
[3] | Jiaojun Zhu,G. Geoff Wang,Huaiqing Zhang,Tian Gao. On the Research of Climate-Smart Forestry [J]. Scientia Silvae Sinicae, 2024, 60(7): 1-7. |
[4] | Chongfan Guan,Xiang Gao,Zhipeng Li,Xiaochuang Hu,Meijun Hu,Jinsong Zhang,Ping Meng,Jinfeng Cai,Shoujia Sun. Response and Prediction of Productivity and Water Use Efficiency of Pinus sylvestris var. mongolica Plantations in Western Liaoning Province to Climate Change [J]. Scientia Silvae Sinicae, 2024, 60(7): 28-39. |
[5] | Yuanxi Liu,Lina Wang,Junwen Wu,Shimin Li. Non-Structural Carbohydrate and Biomass Characteristics of Pinus yunnanensis Seedlings under Continuous Drought Stress [J]. Scientia Silvae Sinicae, 2024, 60(6): 71-85. |
[6] | Zhao Zhuqi, Hu Zhenhong, He Xian, Huang Zhiqun. Research Progresses on the Dynamics of Microbial Community Establishment in Woody Debris [J]. Scientia Silvae Sinicae, 2024, 60(2): 106-117. |
[7] | Wanting Ge,Ying Liu,Zhijia Zhao,Shen Zhang,Jie Li,Guijuan Yang,Guanzheng Qu,Junhui Wang,Wenjun Ma. Prediction of Potential Distribution for Huangxin (Catalpa) in China under Different Climate Scenarios [J]. Scientia Silvae Sinicae, 2024, 60(11): 63-74. |
[8] | Lei Liu,Lijuan Zhao,Jiaqi Liu,Huisheng Zhang,Zhiwei Zhang,Ruifen Huang,Ruihe Gao. Potentially Suitable Distribution Areas of Monochamus alternatus in China under Current and Future Climatic Scenarios Based on Optimized MaxEnt Model [J]. Scientia Silvae Sinicae, 2024, 60(11): 139-148. |
[9] | Panpan Xue,Ning Miao,Ximing Yue,Qiong Tao,Yuandong Zhang,Qiuhong Feng,Kangshan Mao. Divergence Phenomenon of Radial Growth of Minjiang Fir in Response to Warming at Different Slope Aspects and Elevations on the Eastern Margin of the Tibetan Plateau [J]. Scientia Silvae Sinicae, 2023, 59(7): 65-77. |
[10] | Xuelei Wei,Guogang Zhang,Ru Jia,Yunrui Ji,Hongying Xu,Zeyu Yang,Huajin Liu,Yulin Liu,Peiyu Yang. Variation of Waterbird Diversity and Its Affecting Factors in Xingkai Lake, Heilongjiang Province [J]. Scientia Silvae Sinicae, 2023, 59(6): 118-129. |
[11] | Zhenghong Li,Changjun Ding,Weixi Zhang,Jing Zhang,Le Shen,Tengqian Zhang,Mi Ding,Xiaohua Su,Zhongqin Wu,Fazhi Fang. Growth and Physiological Response of Seedlings of Populus deltoides Clones to Different Photoperiods [J]. Scientia Silvae Sinicae, 2023, 59(3): 127-144. |
[12] | Ya Wang,Junhui Wang,Fude Wang,Yifu Liu,Cancan Tan,Yanchao Yuan,Wen Nie,Jianfeng Liu,Ermei Chang,Zirui Jia. Simulation of Suitable Distribution Areas of Picea koraiensis in China Since the Last Interglacial and Under Future Climate Scenarios [J]. Scientia Silvae Sinicae, 2023, 59(12): 1-12. |
[13] | Shuning Zhang,Junxing Chen,Dun Ao,Mei Hong,Yaqian Zhang,Fuhai Bao,Lin Wang,Tana Wuyun,Yu’e Bai,Wenquan Bao. Prediction of Potential Suitable Areas of Amygdalus pedunculata in China under Climate Change [J]. Scientia Silvae Sinicae, 2023, 59(12): 25-36. |
[14] | Liqing Si,Mingyu Wang,Feng Chen,Lifu Shu,Fengjun Zhao,Weike Li. Distribution Characteristics of Lightning and the Warning of Lightning-Caused Forest Fires [J]. Scientia Silvae Sinicae, 2023, 59(10): 1-8. |
[15] | Ning Wang,Yan Zhang,Zhaopeng Xia,Yaya Liu,Jiajun Pan,Yong Liu,Liang Wang. Preparation and Properties of 3D Layered Wood-Based Micro-Pressure Sensor [J]. Scientia Silvae Sinicae, 2022, 58(9): 148-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||