Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (11): 68-75.doi: 10.11707/j.1001-7488.LYKX20220095
Previous Articles Next Articles
Di Huang,Yuan Chen,Luolong Zhong,Jiajun Liang,Zhengmu Wang,Zujing Chen*
Received:
2022-02-23
Online:
2023-11-25
Published:
2023-12-08
Contact:
Zujing Chen
CLC Number:
Di Huang,Yuan Chen,Luolong Zhong,Jiajun Liang,Zhengmu Wang,Zujing Chen. Growth and Defense-related Enzymes of Eucalyptus in Responses to Funneliformis mosseae and Ralstonia solanacearum[J]. Scientia Silvae Sinicae, 2023, 59(11): 68-75.
Fig.1
The time course of F. mosseae infection in the roots of Eucalyptus grandis seedlings The meanings of the letters in the picture are as follows: arbuscule (a), vesicle (v), external hyphae (eh), intercellular hyphae (ih) and spore (s).A: E. grandis seedlings root without F. mosseae inoculation; B: Germination of F. mosseae spores; C: External hyphae of F. mosseae invaded the root cortex cells of E. grandis root; D: F. mosseae and E. grandis root formed an arbuscular structure; E: Arbuscular grew; F: The arbuscular branches expanded into the entire root cell; G: Generation of vesicles; H:The arbuscules degraded and vesicles increased."
Fig.2
The E. grandis seedlings growth under F. mosseae mycorrhizal or non-mycorrhizal. A: Non-mycorrhizal E. grandis seedlings; B: Mycorrhizal E. grandis seedlings; C, D, E, and F: Plant height, ground diameter, dry weight, and strong seedling index of non-mycorrhizal (Nm) and mycorrhizal (Fm) of E. grandis seedlings. ** indicated that there was a significant difference between different treatment at the P<0.01 level."
Table 1
Root growth and contents of N, P and K in the tissues of E. grandis seedlings with F. mosseae mycorrhizal"
处理Treatments | 非菌根化 Non-mycorrhizal | 菌根化Mycorrhizal |
根长Root length/cm | 13.18±1.12 | 23.55±1.83* |
根直径Root diameter/mm | 13.89±0.00 | 19.24±0.04* |
根表面积Root surface area/cm2 | 275.57±15.58 | 453.00±35.35* |
根体积Root volume/cm3 | 0.31±0.05 | 1.10±0.09* |
根冠比Root shoot ratio | 1.06±0.06 | 2.29±0.08* |
地上氮含量 Aboveground nitrogen content/(g·kg?1) | 10.49±0.04 | 28.61±0.24* |
地上磷含量 Aboveground phosphorus content /(g·kg?1) | 0.55±0.03 | 1.62±0.01* |
地上钾含量 Aboveground potassium content/(g·kg?1) | 26.71±0.21 | 45.87±0.12* |
地下氮含量 Underground nitrogen content /(g·kg?1) | 4.12±0.03 | 7.09±0.11* |
地下磷含量 Underground phosphorus content / (g·kg?1) | 0.43±0.02 | 0.82±0.01* |
地下钾含量 Underground potassium content /(g·kg?1) | 6.92±0.12 | 9.92±0.16* |
Fig.4
Effects of defense-related enzyme activity of E. grandis seedlings infected by R. solanacearum in different treatments A, B, C: PAL activity, β-1,3-glucanase activity, and chitinase activity changed in roots and leaves of E. grandis seedlings in different treatments after infection by R. solanacearum, respectively."
程 鑫, 吴纯泽, 韦庆钰, 等. 2023. 水曲柳丛枝菌根真菌接菌苗对干旱胁迫的生长和生理响应. 林业科学, 59(2): 58−66. | |
Chen X, Wu C Z, Wei Q Y, et al. 2023. Growth and physiological responses of Fraxinus mandshurica seedlings inoculated with arbuscular mycorrhizal fungi to drought stress. Scientia Silvae Sinicae, 59(2): 58−66.[in Chinese] | |
弓明钦, 陈 羽, 王凤珍. AM菌根化的两种桉树苗对青枯病的抗性研究. 林业科学研究, 2004, 17 (4): 441- 446.
doi: 10.3321/j.issn:1001-1498.2004.04.006 |
|
Gong M Q, Chen Y, Wang F Z. Resistance of the AM fungus Eucalyptus seedlings against Pseudomonas solanacearum . Forest Research, 2004, 17 (4): 441- 446.
doi: 10.3321/j.issn:1001-1498.2004.04.006 |
|
马 超, 杨欣润, 江高飞, 等. 病原青枯菌土壤存活的影响因素研究进展. 土壤学报, 2021, 58 (6): 1359- 1367. | |
Ma C, Yang X R, Jiang G F, et al. Research progresses on key factors affecting survival of Ralstonia solanacearum in soils . Acta Pedologica Sinica, 2021, 58 (6): 1359- 1367. | |
潘嘉雯, 林 娜, 何 茜, 等. 我国3个桉树人工林种植区生产力影响因素. 生态学报, 2018, 38 (19): 6932- 6940. | |
Pan J W, Lin N, He Q, et al. Factors influencing the productivity of three Eucalyptus plantation areas in China . Acta Ecologica Sinica, 2018, 38 (19): 6932- 6940. | |
施仲美, 奚福生, 何贵整, 等. 桉树品系对青枯病抗性及其稳定性的研究. 广西林业科学, 2000, 29 (1): 1- 6.
doi: 10.19692/j.cnki.gfs.2000.01.001 |
|
Shi Z M, Xi F S, He G Z, et al. Studies on selection of Eucalyptus for resistance to bacterial wilt and resistance stability . Guangxi Forestry Science, 2000, 29 (1): 1- 6.
doi: 10.19692/j.cnki.gfs.2000.01.001 |
|
谭树朋, 孙文献, 刘润进. 球囊霉属真菌与芽孢杆菌M3-4协同作用降低马铃薯青枯病的发生及其机制初探. 植物病理学报, 2015, 45 (6): 661- 669.
doi: 10.13926/j.cnki.apps.2015.06.013 |
|
Tan S P, Sun W X, Liu R J. Combination of Glomus spp. and Bacillus sp. M3-4 promotes plant resistance to bacterial wilt in potato . Acta Phytopathologica Sinica, 2015, 45 (6): 661- 669.
doi: 10.13926/j.cnki.apps.2015.06.013 |
|
王晓瑜, 丁婷婷, 李彦忠, 等. AM真菌与根瘤菌对紫花苜蓿镰刀菌萎蔫和根腐病的影响. 草业学报, 2019, 28 (8): 139- 149.
doi: 10.11686/cyxb2018453 |
|
Wang X Y, Ding T T, Li Y Z, et al. Effects of an arbuscular mycorrhizal fungus and a rhizobium species on Medicago sativa wilt and Fusarium oxysporum root rot . Acta Prataculturae Sinica, 2019, 28 (8): 139- 149.
doi: 10.11686/cyxb2018453 |
|
魏永成, 张 勇, 孟景祥, 等. 不同种源短枝木麻黄对青枯病的生理生化响应及早期选择. 林业科学, 2021, 57 (11): 134- 141.
doi: 10.11707/j.1001-7488.20211113 |
|
Wei Y C, Zhang Y, Meng J X, et al. Physiological and biochemical response of Casuarina equisetifolia from different provenances to bacterial wilt and early selection . Scientia Silvae Sinicae, 2021, 57 (11): 134- 141.
doi: 10.11707/j.1001-7488.20211113 |
|
巫光宏, 何 平, 黄卓烈. 2015. 生物化学实验技术(第二版). 北京: 中国农业出版社, 96−105. | |
Wu G H, He P, Huang Z L. 2015. Experimental technology of biochemistry (second edition). Beijing: China Agriculture Press, 96−105. [in Chinese] | |
湛 蔚, 刘洪光, 唐 明. 菌根真菌提高杨树抗溃疡病生理生化机制的研究. 西北植物学报, 2010, 30 (12): 2437- 2443. | |
Zan W, Liu H G, Tang M. Physiological and biochemical mechanism of mycorrhizal fungi improving the resistance of poplar to canker disease. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30 (12): 2437- 2443. | |
张 菲, 邹英宁, 吴强盛. AM真菌摩西管柄囊霉对干旱胁迫下枳抗氧化酶基因表达的影响. 菌物学报, 2019, 38 (11): 2043- 2050.
doi: 10.13346/j.mycosystema.190199 |
|
Zhang F, Zhou Y N, Wu S Q. Effects of Funneliformis mosseae on the expression of antioxidant enzyme genes in trifoliate orange exposed to drought stress . Mycosystema, 2019, 38 (11): 2043- 2050.
doi: 10.13346/j.mycosystema.190199 |
|
Brundrett M C, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. The New Phytologist, 2018, 220 (4): 1108- 1115.
doi: 10.1111/nph.14976 |
|
Cesaro P, Massa N, Cantamessa S, et al. Tomato responses to Funneliformis mosseae during the early stages of arbuscular mycorrhizal symbiosis . Mycorrhiza, 2020, 30 (1): 1- 10.
doi: 10.1007/s00572-020-00936-0 |
|
Chandrasekaran M. A meta-analytical approach on arbuscular mycorrhizal fungi inoculation efficiency on plant growth and nutrient uptake. Agriculture, 2020, 10 (9): 370- 382.
doi: 10.3390/agriculture10090370 |
|
Chave M, Crozilhac P, Deberdt P, et al. Rhizophagus irregularis MUCL 41833 transitorily reduces tomato bacterial wilt incidence caused by Ralstonia solanacearum under in vitro conditions . Mycorrhiza, 2017, 27 (7): 719- 723.
doi: 10.1007/s00572-017-0783-y |
|
Ferreira M A, Mafia R G, Alfenas A C. Ralstonia solanacearum decreases volumetric growth of trees and yield of kraft cellulose of Eucalyptus spp. . Forest Pathology, 2021, 48 (1): 12376- 12381. | |
Jung S C, Martinez-Medina A, Lopez-Raez J A, et al. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 2012, 38 (6): 651- 664.
doi: 10.1007/s10886-012-0134-6 |
|
Hallasgo A M, Hauser C, Steinkellner S, et al. Single and coinoculation of Serendipita herbamans with arbuscular mycorrhizal fungi reduces Fusarium wilt in tomato and slows disease progression in the long-term . Biological Control, 2022, 168, 104876.
doi: 10.1016/j.biocontrol.2022.104876 |
|
Karimi K, Ahari A B, Weisany W, et al. Funneliformis mosseae root colonization affects Anethum graveolens essential oil composition and its efficacy against Colletotrichum nymphaeae . Industrial Crops & Products, 2016, 90, 126- 134. | |
Khoa N, Xạ T V, Hào L T. Disease-reducing effects of aqueous leaf extract of Kalanchoe pinnata on rice bacterial leaf blight caused by Xanthomonas oryzaepv. oryzae involve induced resistance . Physiological and Molecular Plant Pathology, 2017, 100 (17): 57- 66. | |
Lu C C, Guo N, Yang C, et al. Transcriptome and metabolite profiling reveals the effects of Funneliformis mosseae on the roots of continuously cropped soybeans . BMC Plant Biology, 2020, 20 (1): 479- 492.
doi: 10.1186/s12870-020-02647-2 |
|
Shasmitaa B, Debasish M, Pradipta K M, et al. Priming with salicylic acid induces defense against bacterial blight disease by modulating rice plant photosystem II and antioxidant enzymes activity. Physiological and Molecular Plant Pathology, 2019, 108, 101427- 101437. | |
Song Y Y, Chen D M, Lu K , et al. 2015. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Frontiers in Plant Science, 6: 786. | |
Trotta A, Varese G C, Gnavi E, et al. Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants . Plant and Soil, 1996, 185 (2): 199- 209.
doi: 10.1007/BF02257525 |
|
Trouvelot A, Kough J L, Gianinazzipearson V. 1986. Measure du taux de mycorhization VA d’un systeme radiculaire recherch de methodes d’estimation ayan tune signification fonctionnelle. Physiological and Genetical Aspects of Mycorrhizae, 217−221. | |
Wei Z, Hu J, Gu Y, et al. Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion . Soil Biology and Biochemistry, 2018, 118 (10): 8- 17. | |
Xu Z, Ban Y, Yang R, et al. Impact of Funneliformis mosseae on the growth, lead uptake, and localization of Sophora viciifolia . Canadian Journal of Microbiology, 2016, 62 (4): 361- 373.
doi: 10.1139/cjm-2015-0732 |
|
Yuliar, Nion Y A, Toyota K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum . Microbes and Enviroments, 2015, 30 (1): 1- 11.
doi: 10.1264/jsme2.ME14144 |
|
Zhang H, Franken P. Comparison of systemic and local interactions between the arbuscular mycorrhizal fungus Funneliformis mosseae and the root pathogen Aphanomyces euteiches in Medicago truncatula . Mycorrhiza, 2014, (6): 419- 430.
doi: 10.1007/s00572-013-0553-4 |
|
Zhang X, Bai L, Guo N, et al. Transcriptomic analyses revealed the effect of Funneliformis mosseae on genes expression in Fusarium oxysporum . PLoS One, 2020, 15 (7): 1- 15.
doi: 10.1371/journal.pone.0234448 |
|
Zhang Y, Wang X. Geographical spatial distribution and productivity dynamic change of eucalyptus plantations in China . Scientific Reports, 2021, 11 (1): 19764- 19764.
doi: 10.1038/s41598-021-97089-7 |
[1] | Xin Cheng,Chunze Wu,Qingyu Wei,Wei Li,Xing Wei. Growth and Physiological Responses of Fraxinus mandshurica Seedlings Inoculated with Arbuscular Mycorrhizal Fungi to Drought Stress [J]. Scientia Silvae Sinicae, 2023, 59(2): 58-66. |
[2] | Xiao Wang,Yinli Bi,Yi Wang,Ye Tian,Qiang Li,Xinpeng Du,Yun Guo. Effects of Planting Density of Hippophae rhamnoides and Inoculation of AMF on Understory Vegetation Growth and Soil Improvement [J]. Scientia Silvae Sinicae, 2023, 59(10): 138-149. |
[3] | Longfei Hao,Tingyan Liu,Yongqin He,Shengxi Zhang,Yuan Zhao. Responses of Rhizosphere Soil Stoichiometry of Clematis fruticosa Inoculated with Arbuscular Mycorrhizal Fungi to Nitrogen Deposition [J]. Scientia Silvae Sinicae, 2022, 58(6): 151-160. |
[4] | Lina Han,Xianan Xie,Hui Chen,Ming Tang. Molecular Characteristics and Function of the Metal Tolerant Protein, EgMTP6 in Eucalyptus grandis [J]. Scientia Silvae Sinicae, 2022, 58(5): 93-101. |
[5] | Jinchi Wang,Qinglin Huang,Minghai Yan,Ruchu Huang,Qunrui Zheng. Characteristics of 13-Year-Old Cyclobalanopsis glauca Natural Forest Converted from Eucalyptus grandis Plantation [J]. Scientia Silvae Sinicae, 2021, 57(9): 13-20. |
[6] | Juan Song,Zhuhua Wu,Xingliang Weng,Xing Zhao,Xuexiang Yang,Ronglin Tang,Bing Cao,Yu Wu,Houyu Shen,Jiahong Ren,Fengmao Chen. Diversity of Arbuscular Mycorrhizal Fungi in Rhizosphere of Liquidambar formosana [J]. Scientia Silvae Sinicae, 2021, 57(9): 98-109. |
[7] | Wenxin Zhang,Shaoshuai Yu,Guozhong Tian,He Wang,Zhengguang Ren,Shengjie Wang,Dezhi Kong,Yong Li,Caili Lin. Detection and Molecular Variation of Jujube Witches' Broom Phytoplasma in Resistant Jujube Scions Grafted on Diseased Root Stocks in Three Jujube Orchards [J]. Scientia Silvae Sinicae, 2021, 57(11): 49-58. |
[8] | Wang Xiaorong, Cheng Longjun, Xu Fenghua, Ni Xiaoxiang, Lu Jun. Function of ZFP6 Gene from Eucalyptus grandis in Response to Abiotic Stresses [J]. Scientia Silvae Sinicae, 2017, 53(11): 60-68. |
[9] | Sun Lijuan, Wang Xiaorong, Ni Xiaoxiang, Cheng Longjun. The Structure and Expression of EgrNAC1 Gene Associated with Stress Response in Eucalyptus grandis [J]. Scientia Silvae Sinicae, 2017, 53(10): 60-69. |
[10] | Xu Fenghua, Cheng Longjun, Wei Xiaoling, Dou Jinqing. Expression and Function of EgrCR Gene Responding to Cold Stress in Eucalyptus grandis [J]. Scientia Silvae Sinicae, 2016, 52(3): 59-67. |
[11] | Song Fuqiang, Kong Xiangshi, Li Jize, Chang Wei. Screening the Related Genes in the AM Fungi and Amorpha fruticosa Symbiosis with the Suppression Subtractive Hybridization Technique [J]. Scientia Silvae Sinicae, 2014, 50(11): 64-74. |
[12] | Ouyang Lejun;Liu Yuan;Huang Zhenchi;Zeng Fuhua. Transformation of TSRF 1 into Eucalyptus urophylla and the Broad-Spectrum Disease Resistance of the Transgenic Plant to Diseases [J]. Scientia Silvae Sinicae, 2013, 49(4): 46-53. |
[13] | Wang Yanli;Li Zhengnan;Li Huiping;Ran Longxian. Determination of Disease Resistance of Eucalypt against Bacterial Wilt Caused by Ralstonia solanacearum [J]. Scientia Silvae Sinicae, 2011, 47(6): 101-107. |
[14] | Song Ge;Song Fuqiang. Response Characteristics of Physiological Defense Indexes of Host Plant at Early Stage of Arbuscular Mycorrhiza Development between Amorpha fruticosa and AM Fungi [J]. Scientia Silvae Sinicae, 2011, 47(10): 44-50. |
[15] | Wu Daqiang;Cai Cheng;Wei Guo;Xiang Yan. Genome Wide Analysis of NBS Encoding Disease Resistance Genesin Populus trichocarpa [J]. Scientia Silvae Sinicae, 2009, 12(2): 152-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||