Scientia Silvae Sinicae ›› 2022, Vol. 58 ›› Issue (1): 162-174.doi: 10.11707/j.1001-7488.20220117
• Scientific notes • Previous Articles Next Articles
Mengjiao Zhang1,Shuaiying Shi1,Zheng Liu2,Xueling Zhu3,Kun Fan4,Guoan Shi1,*
Received:
2021-02-08
Online:
2022-01-25
Published:
2022-03-08
Contact:
Guoan Shi
CLC Number:
Mengjiao Zhang,Shuaiying Shi,Zheng Liu,Xueling Zhu,Kun Fan,Guoan Shi. Effects of Different Thinning Intensity on Growth, Grain Yield, and Quality of Tree Penoy'Fengdan'[J]. Scientia Silvae Sinicae, 2022, 58(1): 162-174.
Table 1
Effects of different thinning intensities on flowering numbers and flower diameter of 'Fengdan'"
间伐强度 Thinning intensity | 单株开花数 Flowers per plant/(N·plant-1) | 位一花径 First-flower diameter/ cm | 位二花径 Second-flower diameter/ cm | 位三花径 Third-flower diameter/ cm | 位四花径 Fourth-flower diameter/ cm |
CK | 9.2±1.4cB | 12.89±1.92cB | 11.77±2.21 | 8.50±1.58c | |
A | 11.7±1.4bcAB | 14.33 ±2.76bB | 13.21±2.69 | 11.11±2.80b | |
B | 13.9±1.2aAB | 13.97±1.94bB | 12.65±1.91 | 12.19±2.06ab | 10.60±2.12 |
C | 14.9±1.4aA | 15.89 ±1.93aA | 14.12 ±1.83 | 12.35±2.34a | 9.30±0.85 |
D | 13.9±1.5abAB | 16.40 ±1.76aA | 14.59±2.12 | 12.98±1.72a |
Table 2
Effects of different thinning intensities on the growth of new shoots of 'Fengdan'"
间伐强度 Thinning intensity | 单株新生枝条数 New branch number/plant-1 | 新生枝粗度 New branch width/mm | 新生枝条长度 New branch length/cm | 单株新生叶片数 Number of leaves per plant/(N·plant-1) |
CK | 8.6±0.6b | 6.85±0.2c | 36.0±1.3bB | 78.2±12.5d |
A | 9.2±0.8b | 7.22±0.27b | 36.6±1.4bAB | 103.0±12.8c |
B | 9.8±0.8ab | 7.52±0.29ab | 38.1±2.3abAB | 137.2±14.7b |
C | 10.6±0.9a | 7.65±0.29a | 39.2±1.9aAB | 133.0±13.5b |
D | 10.8±0.8a | 7.76±0.27a | 39.6±1.6aA | 153.2±11.9a |
Table 3
Effects of different thinning intensities on leaf angle of 'Fengdan'"
间伐强度 Thinning intensity | 叶片位置Leaf position | ||||||||
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | |
CK | 51.0±4.2 | 48.2±3.4d | 49.2±4.3c | 48.0±5.7c | 54.0±3.1c | 50.0±3.5d | 48.6±3.4c | 56.3±4.8c | 56.7±2.9c |
A | 51.0±2.2 | 52.8±2.6c | 54.2±1.6bc | 50.2±2.0bc | 57.6±2.5bc | 53.2±2.2cd | 48.0±2.7c | 53.0±5.7d | 53.8±3.9d |
B | 53.3±4.1 | 53.5±2.9c | 58.3±5.2ab | 55.7±3.8b | 58.3±4.1bc | 57.5±4.2bc | 53.8±4.8b | 55.0±5.0c | 58.3±5.8ab |
C | 51.0±2.2 | 58.2±2.5b | 61.0±4.2a | 60.6±3.3a | 64.0±6.5b | 59.0±2.2b | 53.0±2.7b | 58.0±2.7b | 57.5±2.9b |
D | 52.1±2.7 | 60.7±4.2a | 61.7±3.5a | 66.4±3.0a | 74.3±2.2a | 65.0±5.0a | 61.3±2.5a | 63.3±2.9a | 60.0±5.0a |
Table 4
Effect of different thinning intensities on chlorophyll content of 'Fengdan' leaves"
月份 Months | 间伐强度 Thinning intensity | 上层 Upper | 中层 Middle | 下层 Lower |
5月May | CK | 1.92±0.06bB | 1.38±0.09C | 1.19±0.02bB |
A | 2.02±0.02aAB | 1.42±0.04C | 1.27±0.06aAB | |
B | 2.00±0.05aAB | 1.45±0.09C | 1.30±0.05aAB | |
C | 2.04±0.03aA | 1.92±0.04B | 1.32±0.07aA | |
D | 2.07±0.05aA | 2.05±0.01A | 1.33±0.03aA | |
6月June | CK | 1.04±0.08C | 0.95±0.05C | 0.90±0.01C |
A | 1.21±0.03B | 0.97±0.06C | 0.92±0.04C | |
B | 1.32±0.08B | 1.20±0.04B | 0.95±0.04C | |
C | 1.50±0.03A | 1.35±0.03A | 1.12±0.01B | |
D | 1.51±0.02A | 1.37±0.05A | 1.21±0.04A | |
7月July | CK | 0.83±0.03dC | 0.89±0.07cB | 0.68±0.06cB |
A | 0.93±0.07cC | 1.00±0.03bB | 0.70±0.04cB | |
B | 1.05±0.04bB | 1.20±0.05aA | 0.76±0.03bAB | |
C | 1.18±0.05aA | 1.27±0.04aA | 0.84±0.03aA | |
D | 0.89±0.02cdC | 0.97±0.05bcB | 0.83±0.04aA |
Table 5
Effect of different thinning intensity on SOD and CAT activities in 'Fengdan' leaves"
月份 Months | 间伐强度 Thinning intensity | SOD活性SOD activity/(U·g-1min-1) | CAT活性CAT activity/(U·g-1min-1) | |||||
上层 Upper | 中层 Middle | 下层 Lower | 上层 Upper | 中层 Middle | 下层 Lower | |||
5月May | CK | 271.73±3.63b | 266.2±3.13 | 236.31±10.34c | 10.38±0.83 | 6.58±1.18b | 6.34±0.66b | |
A | 270.81±8.96b | 267.58±2.74 | 254.28±4.26b | 10.16±1.29 | 6.72±0.91b | 6.66±1.46b | ||
B | 279.36±5.26ab | 267.78±1.29 | 254.22±5.05b | 10.54±0.33 | 7.62±1.08b | 7.00±1.66b | ||
C | 280.48±4.19ab | 269.62±1.34 | 267.12±2.25a | 10.48±1.09 | 8.00±0.44b | 7.74±0.45ab | ||
D | 287.13±2.43a | 269.62±4.89 | 267.71±2.91a | 10.72±0.92 | 10.70±0.36a | 9.46±0.76a | ||
6月June | CK | 233.61±5.54B | 211.30±2.47d | 206.10±3.02b | 5.30±0.25 | 5.02±0.5b | 3.34±0.35cC | |
A | 232.83±1.57B | 227.62±3.15c | 212.95±16.02ab | 5.34±0.97 | 5.44±0.09ab | 4.22±0.33bBC | ||
B | 236.05±5.04B | 230.06±2.09c | 213.08±4.72ab | 5.44±0.56 | 6.22±0.21ab | 5.68±0.55aA | ||
C | 234.54±3.82B | 237.37±1.49b | 216.17±2.00ab | 5.56±0.39 | 6.60±1.28a | 5.78±0.5aA | ||
D | 251.85±3.21A | 247.96±4.05a | 225.52±4.64a | 5.70±0.81 | 5.86±0.28ab | 5.36±0.31aAB | ||
7月July | CK | 103.08±1.72cdBC | 99.46±2.20C | 84.91±5.63dC | 2.56±0.72bc | 4.16±0.81 | 3.24±0.74cB | |
A | 111.05±2.69bcAB | 117.10±8.88B | 92.81±7.41cdBC | 3.78±0.82ab | 4.92±0.75 | 4.12±0.43bcAB | ||
B | 114.8±4.42abAB | 117.70±4.52B | 100.84±1.61bcB | 3.82±0.85ab | 4.74±0.57 | 4.78±0.28abA | ||
C | 123.29±12.62aA | 140.87±6.9A | 118.03±2.18aA | 3.96±0.52a | 4.86±0.52 | 4.76±0.09abA | ||
D | 92.81±4.89dC | 114.21±2.47B | 103.81±2.37bB | 2.82±0.47c | 5.42±0.07 | 5.20±0.52aA |
Table 6
Effect of different thinning intensities on yield and yield components of 'Fengdan'"
参数Parameters | 间伐强度Thinning intensity | ||||
CK | A | B | C | D | |
单株结果数 Number of fruit per plant/(fruit·plant-1) | 7.0±0.7dB | 7.4±0.8cdB | 8.0±0.9bcAB | 8.9±1.0aA | 8.5±0.8abA |
果荚长度Length of pod/cm | 7.4±0.6B | 7.1±0.7B | 9.0±0.7A | 8.9±0.9A | 8.5±0.6A |
果荚厚度Pod thickness/cm | 1.6±0.1b | 1.7±0.2ab | 1.8±0.1ab | 1.8±0.1ab | 1.9±0.1a |
单果籽粒数Number of grains per fruit/(seed·fruit-1) | 37.1±8.9bB | 46.8±10.3abAB | 46.9±10.7abAB | 53.9±10.3aA | 51.0±10.3aAB |
百粒质量Hundred grain mass/g | 34.22±0.8e | 36.99±0.13c | 38.02±0.28b | 38.90±0.33a | 36.06±0.56d |
实际籽粒产量Grain yield/(kg·hm-2) | 1532dC | 1906cB | 2105bA | 2267aA | 1540dC |
Table 7
Effect of different thinning intensities on grain oil quality of 'Fengdan'"
参数 Parameters | 间伐强度Thinning intensity | ||||
CK | A | B | C | D | |
棕榈酸Palmitic acid(%) | 5.56 | 5.57 | 5.68 | 5.94 | 5.85 |
棕榈油酸Palmitoleic acid(%) | 0.14 | 0.14 | 0.32 | 0.24 | 0.22 |
硬脂酸Stearic acid(%) | 1.92 | 1.83 | 1.82 | 1.92 | 2.14 |
油酸Oleic acid(%) | 22.20 | 21.70 | 22.10 | 22.30 | 21.20 |
亚油酸Linoleic acid(%) | 24.60 | 23.90 | 22.00 | 23.90 | 24.30 |
α-亚麻酸α-Linolenic acid(%) | 45.20 | 46.60 | 47.60 | 45.20 | 45.90 |
花生酸Arachidic acid(%) | 0.13 | 0.13 | 0.14 | 0.14 | 0.15 |
花生一烯酸Arachidonic acid(%) | 0.26 | 0.27 | 0.27 | 0.26 | 0.29 |
饱和脂肪酸SFA(%) | 7.61 | 7.53 | 7.64 | 8.00 | 8.14 |
不饱和脂肪酸USFA(%) | 92.41 | 92.61 | 92.29 | 91.90 | 91.88 |
多不饱和脂肪酸PUFA(%) | 69.80 | 70.50 | 69.60 | 69.10 | 70.20 |
不饱和脂肪酸/饱和脂肪酸USFA/SFA | 12.14 | 12.30 | 12.08 | 11.49 | 11.28 |
α-VE/(mg·kg-1) | ND | ND | ND | ND | ND |
β-VE/(mg·kg-1) | ND | ND | ND | ND | ND |
γ-VE/(mg·kg-1) | 95.40 | 102.00 | 104.00 | 116.00 | 84.00 |
Δ-VE/(mg·kg-1) | 3.22 | 3.87 | 3.92 | 3.97 | 2.51 |
总VE Total VE(mg·kg-1) | 98.62 | 105.87 | 107.92 | 119.97 | 86.51 |
±% | 0 | 7.35 | 9.43 | 21.65 | -12.28 |
陈法志, 陈镇, 戢小梅, 等. 油用牡丹种质资源及育种研究进展. 江汉大学学报(自然科学版), 2019, 47 (2): 181- 185. | |
Chen F Z , Chen Z , Ji X M , et al. Progress in germplasm resources and breeding research of oil peony (Paeonia suffruticosa). Journal of Jianghan University(Natural Science Edition), 2019, 47 (2): 181- 185. | |
丁熙柠, 史田, 杨辉, 等. 喷施芸苔素内酯对油用牡丹产量性状和籽粒品质的影响. 山东农业科学, 2019, 51 (11): 126- 131. | |
Ding X N , Shi T , Yang H , et al. Effects of brassinolide on yield characters and grain quality of oil peony. Shandong Agricultural Sciences, 2019, 51 (11): 126- 131. | |
韩晨静, 王磊, 王琦, 等. 遮荫对油用牡丹叶片衰老生理指标的影响. 核农学报, 2019, 33 (12): 2492- 2498.
doi: 10.11869/j.issn.100-8551.2019.12.2492 |
|
Han C J , Wang L , Wang Q , et al. Effects of shading on leaf senescence and physiological characteristics of oilseed peony. Journal of Nuclear Agricultural Sciences, 2019, 3 (12): 2492- 2498.
doi: 10.11869/j.issn.100-8551.2019.12.2492 |
|
黄财智, 张文辉, 李罡, 等. 间伐强度对黄桥林区辽东栎林结实规律的影响. 应用生态学报, 2016, 27 (11): 3413- 3419. | |
Huang C Z , Zhang W H , Li G , et al. Effect of thinning intensities on the fruiting regularities of Quercus liaotungensis forest in Huangqiao. Chinese Journal of Applied Ecology, 2016, 27 (11): 3413- 3419. | |
贾炜玮, 罗天泽, 李凤日. 基于抚育间伐效应的红松人工林枝条密度模型. 北京林业大学学报, 2021, 43 (2): 10- 21. | |
Jia W W , Luo T Z , Li F R . Branch density model of Pinus koraiensis plantation based on thinning effect. Journal of Beijing Forestry University, 2021, 43 (2): 10- 21. | |
李秀丽, 陈法志, 戢小梅, 等. 湖北省油用牡丹低产原因及增产关键栽培技术. 湖北农业科学, 2019, 58 (16): 84- 88, 195. | |
Li X L , Chen F Z , Ji X M , et al. Reasons for low-yield of oil peony in Hubei Province and key cultivation techniques for increasing yield. Hubei Agricultural Sciences, 2019, 58 (16): 84- 88, 195. | |
李育材. 中国油用牡丹工程的战略思考. 中国工程科学, 2014, 16 (10): 58- 63.
doi: 10.3969/j.issn.1009-1742.2014.10.009 |
|
Li Y C . The strategy on the oil tree peony industry in China. Strategic Study of CAE, 2014, 16 (10): 58- 63.
doi: 10.3969/j.issn.1009-1742.2014.10.009 |
|
刘春洋, 史国安, 王玮, 等. 断根处理对牡丹'凤丹白'幼苗根系发育的影响. 林业实用技术, 2013, (10): 47- 49. | |
Liu C Y , Shi G A , Wang W , et al. Effects of root breakage treatment on root development of peony 'fengdanbai' seedlings. Practical Forestry Technology, 2013, (10): 47- 49. | |
刘春洋, 史田, 史国安, 等. 不同移栽时期对'凤丹'牡丹植株生长效应及其综合评价. 林业科学, 2019, 55 (8): 54- 62. | |
Liu C Y , Shi T , Shi G A , et al. Effects of different transplanting periods on growth of tree peony 'Fengdan' seedings and the comprehensive evaluation. Scientia Silve Sinicae, 2019, 55 (8): 54- 62. | |
卢立华, 农友, 李华, 等. 保留密度对杉木人工林生长和生物量及经济效益的影响. 应用生态学报, 2020, 31 (3): 717- 724. | |
Lu L H , Nong Y , Li H , et al. Effects of retention density on growth, biomass, and economic benefit of Cunninghamia lanceolata plantion. Chinese Journal of Applied Ecology, 2020, 31 (3): 717- 724. | |
马剑平, 姜生秀, 付贵全, 等. 遮阳对紫斑牡丹光合特性和叶片性状特征的影响. 经济林研究, 2018, 36 (2): 169- 174. | |
Ma J P , Jiang S X , Fu G Q , et al. The effect of shading on the photosynthetic characteristics and leaf character traits of Paeonia rockii. Nonwood Forest Research, 2018, 36 (2): 169- 174. | |
马雪情, 刘春洋, 黄少峻, 等. 牡丹籽粒发育特性与营养成分动态变化的研究. 中国粮油学报, 2016, 31 (5): 71- 75.
doi: 10.3969/j.issn.1003-0174.2016.05.014 |
|
Ma X Q , Liu C Y , Huang S J , et al. Seeds developmental characteristics and nutritional components of oil tree peony. Journal of the Chinese Cereals and Oils Association, 2016, 31 (5): 71- 75.
doi: 10.3969/j.issn.1003-0174.2016.05.014 |
|
聂佩显, 薛晓敏, 王来平, 等. '红富士'苹果郁闭园间伐处理对果园结构、光能利用以及产量品质的影响. 果树学报, 2019, 36 (4): 438- 446. | |
Nie P X , Xue X M , Wang L P , et al. Effect of different tree-removal methods on orchard structure, solar energy utilization and fruit quality in overcrowded 'Red Fuji' apple orchards. Journal of Fruit Science, 2019, 36 (4): 438- 446. | |
史国安, 焦封喜, 焦元鹏, 等. 中国油用牡丹的发展前景及对策. 中国粮油学报, 2014, 29 (9): 124- 128. | |
Shi G A , Jiao F X , Jiao Y P , et al. Development of prospects and strategies of oil tree peony industry in China. Journal of the Chinese Cereals and Oils Association, 2014, 29 (9): 124- 128. | |
宋宏伟, 刘少华, 张江涛, 等. 大田栽培模式下油用牡丹'凤丹'光合、蒸腾特性研究. 上海农业学报, 2020, 36 (3): 25- 29. | |
Song H W , Liu S H , Zhang J T , et al. Research on photosynthetic and transpiration characteristics of Paeonia ostii 'Feng Dan' under field cultivation condition. Acta Agriculturae Shanghai, 2020, 36 (3): 25- 29. | |
孙文泰, 牛军强, 董铁, 等. 间伐改形对陇东旱塬密闭苹果园树体冠层结构和发育后期叶片质量的影响. 应用生态学报, 2018, 29 (9): 214- 222. | |
Sun W T , Niu J Q , Dong T , et al. Effects of thinning and reshaping on the canopy structure and leaf quality at late growth stage in loess plateau of eastern Gansu. Chinese Journal of Applied Ecology, 2018, 29 (9): 214- 222. | |
王秋丽, MatthiasAlbert. 近自然森林经营在德国的应用成效分析. 林业科学研究, 2019, 32 (3): 127- 134. | |
Wang Q L , Albert M . Analysis on the effect of close-to-nature forest management in Germany. Forest Research, 2019, 32 (3): 127- 134. | |
王晓静, 马慧丽, 郭丽丽, 等. 种植密度对油用牡丹'凤丹'形态性状和产量的影响. 北方园艺, 2018, (3): 101- 108. | |
Wang X J , Ma H L , Guo L L , et al. Effects of planting density on morphological characters and yield of oil peony 'Fengdan'. Northern Horticulture, 2018, (3): 101- 108. | |
王懿祥, 张守攻, 陆元昌, 等. 干扰树间伐对马尾松人工林目标树生长的初期效应. 林业科学, 2014, 50 (10): 67- 73. | |
Wang Y X , Zhang S G , Lu Y C , et al. Initial effects of crop trees growth after crop tree release on Pinus massoniana plantation. Scientia Silvae Sinicae, 2014, 50 (10): 67- 73. | |
魏双雨, 李敏, 吉文丽, 等. 适宜氮磷钾用量和配比提高油用牡丹产量和出油量. 植物营养与肥料学报, 2019, 25 (5): 880- 888. | |
Wei S Y , Li M , Ji W L , et al. Appropriate N, P and K fertilizer rates and combination ratios to increase seed yield and oil production of oil tree peony. Journal of Plant Nutrition and Fertilizer, 2019, 25 (5): 880- 888. | |
温晶, 张秋良, 李嘉悦, 等. 间伐强度对兴安落叶松林林下植被多样性及生物量的影响. 中南林业科技大学学报, 2019, 39 (5): 95- 100, 118. | |
Wen J , Zhang Q L , Li J Y , et al. Effects of thinning intensity on diversity of undergrowth vegetation and biomass in Larix gmelini forest. Journal of Central South University of Forestry Science and Technology, 2019, 39 (5): 95- 100, 118. | |
夏国威, 陈东升, 孙晓梅, 等. 日本落叶松冠层光合生理参数的空间异质性研究. 林业科学研究, 2018, 31 (6): 130- 137. | |
Xia G W , Chen D S , Sun X M , et al. Spatial heterogeneity of photosynthetic physiological parameters in larch canopy. Forest Research, 2018, 31 (6): 130- 137. | |
徐雪蕾, 孙玉军, 周华, 等. 间伐强度对杉木人工林林下植被和土壤性质的影响. 林业科学, 2019, 55 (3): 1- 12. | |
Xu X L , Sun Y J , Zhou H , et al. Effects of thinning intensity on understory growth and soil properties in Chinese fir plantation. Scientia Silvae Sinicae, 2019, 55 (3): 1- 12. | |
闫东锋, 贺文, 马瑞婷, 等. 抚育间伐对栓皮栎种群空间分布格局的影响. 生态环境学报, 2020, 29 (3): 5- 13. | |
Yan D F , He W , Ma R T , et al. Effects of forest thinning on the spatial distribution pattern of Quercus variabilis population. Ecology and Environmental Scionces, 2020, 29 (3): 5- 13. | |
杨静萱, 吉文丽, 刘玲, 等. 株行距配置对油用牡丹'凤丹'生长发育及产量的影响. 干旱区资源与环境, 2017, 31 (6): 202- 208. | |
Yang J X , Ji W L , Liu L , et al. Effects of plant-row spacing on growth and yield components of oil tree peony Paeonia ostii 'Feng Dan'. Journal of Arid Land Resources and Environment, 2017, 31 (6): 202- 208. | |
杨玉珍, 李娟, 常可可, 等. 套种模式下不同株行距核桃对油用牡丹光合特性及产量的影响. 河南农业科学, 2019, 48 (2): 105- 111. | |
Yang Y Z , Li J , Chang K K , et al. Photosynthetic characteristics and seed yields of Paeonia ostii intercropped with juglans regia with different spacing. Journal of Henan Agricultural Sciences, 2019, 48 (2): 105- 111. | |
张小鹏. 2017. 抚育间伐对华山松人工林生长及其天然更新的影响研究. 杨凌: 西北农林科技大学. | |
Zhang X P. 2017. Effects of thinning on growth and natural regeneration in Pinus armandii plantation. Yangling: Northwest Science and Technology University of Agriculture and Forestry. [in Chinese] | |
赵世杰, 苍晶. 植物生理学实验指导. 北京: 中国农业出版社, 2016. | |
Zhao S J , Cang J . Experimental guide of plant physiology. Beijing: China Agriculture Press, 2016. | |
周建云, 李荣, 张文辉, 等. 不同间伐强度下辽东栎种群结构特征与空间分布格局. 林业科学, 2012, 48 (4): 149- 155. | |
Zhou J Y , Li R , Zhang W H , et al. Effects of thinning intensity on structure characteristics and spatial distribution of Quercus wutaishanica populations. Scientia Silvae Sinicae, 2012, 48 (4): 149- 155. | |
周曙光, 孔祥生, 张妙霞, 等. 遮光对牡丹光合及其他生理生化特性的影响. 林业科学, 2010, 46 (2): 56- 60. | |
Zhou S G , Kong X S , Zhang M X , et al. Effects of shading on photosynthesis and other physiological and biochemical characteristics in tree peony. Scientia Silvae Sinicae, 2010, 46 (2): 56- 60. | |
周焘, 王传宽, 周正虎, 等. 抚育间伐对长白落叶松人工林土壤碳、氮及其组分的影响. 应用生态学报, 2019, 30 (5): 1651- 1658. | |
Zhou T , Wang C K , Zhou Z H , et al. Effects of thinning on soil carbon and nitrogen fractions in Larix olgensis plantation. Chinese Journal of Applied Ecology, 2019, 30 (5): 1651- 1658. | |
周志钦, 潘开玉, 洪德元. 牡丹组野生种间亲缘关系和栽培牡丹起源研究进展. 园艺学报, 2003, 31 (6): 751- 757.
doi: 10.3321/j.issn:0513-353X.2003.06.031 |
|
Zhou Z Q , Pan K Y , Hong D Y . Advances in the relationship between wild species and the origin of cultivated peony. Acta Horticulturae Sinica, 2004, 31 (6): 751- 757. | |
Bai S H , Dempsey R , Reverchon F , et al. Effects of forest thinning on soil-plant carbon and nitrogen dynamics. Plant and Soil, 2017, 411 (1/2): 437- 449. | |
Ballaré C L , Pierik R . The shade-avoidance syndrome: multiple signals and ecological consequences. Plant, Cell and Environment, 2017, 40 (11): 2530- 2543.
doi: 10.1111/pce.12914 |
|
Cabon A , Mouillot F , Lempereur M , et al. Thinning increases tree growth by delaying drought-induced growth cessation in a mediterranean evergreen oak coppice. Forest Ecology and Management, 2018, 409, 333- 342.
doi: 10.1016/j.foreco.2017.11.030 |
|
Carriedo L G , Maloof J N , Brady S M . Molecular control of crop shade avoidance. Current Opinion in Plant Biology, 2016, 30, 151- 158.
doi: 10.1016/j.pbi.2016.03.005 |
|
Casal J J . Shade avoidance. Arabidopsis Book, 2012, 10, e0157.
doi: 10.1199/tab.0157 |
|
Casal J J . Photoreceptor signaling networks in plant responses to shade. Annual Review of Plant Biology, 2013, 64, 403- 427.
doi: 10.1146/annurev-arplant-050312-120221 |
|
Chitwood D H , Headland L R , Filiault D L , et al. Native environment modulates leaf size and response to simulated foliar shade across wild tomato species. PLoS ONE, 2012, 7 (1): e29570.
doi: 10.1371/journal.pone.0029570 |
|
Courbier S , Pierik R . Canopy light quality modulates stress responses in plants. iScience, 2019, 22, 441- 452.
doi: 10.1016/j.isci.2019.11.035 |
|
Hadian F , Jafari R , Bashari H , et al. Effects of drought on plant parameters of different rangeland types in Khansar region, Iran. Arabian Journal of Geosciences, 2019, 12 (3): 1- 15. | |
Lin J H , Zhang R , Hu Y Y , et al. Interactive effects of drought and shading on Torreya grandis seedlings: physiological and growth responses. Trees, 2019, 33 (3): 951- 961.
doi: 10.1007/s00468-019-01831-8 |
|
Nguyen T T , Tai D T , Zhang P , et al. Effect of thinning intensity on tree growth and temporal variation of seed and cone production in a Pinus koraiensis plantation. Journal of Forestry Research, 2019, 30 (3): 835- 845.
doi: 10.1007/s11676-018-0690-x |
|
Park J , Kim T , Moon M , et al. Effects of thinning intensities on tree water use, growth, and resultant water use efficiency of 50-year-old Pinus koraiensis forest over four years. Forest Ecology and Management, 2018, 408, 121- 128.
doi: 10.1016/j.foreco.2017.09.031 |
|
Peng M , Li Z , Zhou N , et al. Linking phytochrome-interacting factor to histone modification in plant shade avoidance. Plant Physiology, 2018, 176 (2): 1341- 1351.
doi: 10.1104/pp.17.01189 |
|
Ranade S S , Delhomme N , García-Gil M R . Transcriptome analysis of shade avoidance and shade tolerance in conifers. Planta, 2019, 250 (1): 299- 318.
doi: 10.1007/s00425-019-03160-z |
|
Shi Q B , Kong F Y , Zhang H S , et al. Molecular mechanisms governing shade responses in maize. Biochemical and Biophysical Research Communications, 2019, 516 (1): 112- 119.
doi: 10.1016/j.bbrc.2019.05.142 |
|
Stepanova A N , Robertson-Hoyt J , Yun J , et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell, 2008, 133 (1): 177- 191.
doi: 10.1016/j.cell.2008.01.047 |
|
Trentini C P , Campanello P I , Villagra M , et al. Thinning of loblolly pine plantations in subtropical Argentina: impact on microclimate and understory vegetation. Forest Ecology and Management, 2017, 384, 236- 247.
doi: 10.1016/j.foreco.2016.10.040 |
|
Ugarte C C , Trupkin S A , Ghiglione H , et al. Low red/far-red ratios delay spike and stem growth in wheat. Journal of Experimental Botany, 2010, 61 (11): 3151- 3162.
doi: 10.1093/jxb/erq140 |
|
Valladares F , Niinemets V . Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology Evolution, and Systematics, 2008, 39, 237- 257.
doi: 10.1146/annurev.ecolsys.39.110707.173506 |
|
Wang X Y , Gao X Q , Liu Y L , et al. Progress of research on the regulatory pathway of the plant shade-avoidance syndrome. Frontiers in Plant Science, 2020, 11, 439.
doi: 10.3389/fpls.2020.00439 |
[1] | Weiping Liu,Wei Song,Chao Gao,Yandong Zhao. Construction of Evaluation Model of Poplar Growth Status Based on Stem Moisture of Standing Trees [J]. Scientia Silvae Sinicae, 2021, 57(5): 43-52. |
[2] | Ruijing Xu,Xuan Hu,Guanglu Liu,Wen Guo,Changqiang Liang,Xianghe Kong. Differences of Leaf Functional Traits Between Two Climbing Bamboo Species in Tropical Lowland Rainforest of Hainan Island [J]. Scientia Silvae Sinicae, 2021, 57(12): 155-166. |
[3] | Xiaohong Zhang,Huiru Zhang,Jun Lu,Xiangdong Lei. Early Effects of Crop Tree Release Tending on Growth of Natural Secondary Quercus mongolica Forest [J]. Scientia Silvae Sinicae, 2020, 56(10): 83-92. |
[4] | Ye Yuqian, Zhao Jiahao, Liu Chang, Guan Qingwei. Impacts of Thinning Intensity on Neutral Sugars in Rhizosphere and Bulk Soil of Pinus massoniana Plantation [J]. Scientia Silvae Sinicae, 2019, 55(8): 28-35. |
[5] | Liu Chunyang, Shi Tian, Shi Guo, Yang Linfei, Fan Xuefeng, Gao Shuangcheng, Zhang Gaina. Effects of Different Transplanting Periods on Growth of Tree Peony ‘Fengdan’ Seedlings and the Comprehensive Evaluation [J]. Scientia Silvae Sinicae, 2019, 55(8): 54-62. |
[6] | Xia Guowei, Sun Xiaomei, Chen Dongsheng, Zhang Shougong. Spatial Variation of Photosynthetic Characteristics in Canopy of Larix kaempferi [J]. Scientia Silvae Sinicae, 2019, 55(6): 13-21. |
[7] | Xu Xuelei, Sun Yujun, Zhou Hua, Zhang Peng, Hu Yang, Wang Xinjie. Effects of Thinning Intensity on Understory Growth and Soil Properties in Chinese fir Plantation [J]. Scientia Silvae Sinicae, 2019, 55(3): 1-12. |
[8] | He Huaijiang, Zhang Zhonghui, Zhang Chunyu, Hao Minhui, Yao Jie, Xie Zhe, Gao Haitao, Zhao Xiuhai. Short-Term Effects of Thinning Intensity on Stand Growth and Species Diversity of Mixed Coniferous and Broad-Leaved Forest in Northeastern China [J]. Scientia Silvae Sinicae, 2019, 55(2): 1-12. |
[9] | Lingyan Chen,Dejin Xie,Jundong Rong,Jinli Lai,Xueling Lin,Yushan Zheng. Effects of Photosynthetic Pigment Content on Photosynthetic Characteristics of Different Leaf Color Phenotypes of Sinobambusa tootsik f. luteoloalbostriata [J]. Scientia Silvae Sinicae, 2019, 55(12): 21-31. |
[10] | Guijuan Yang,Haifan Hu,Honggang Sun,Jianguo Zhang,Aiguo Duan. The Influences of Stand Age, Planting Density and Self-Thinning on Relationship between Size Inequality and Periodic Annual Increment in Chinese Fir (Cunninghamia lanceolata)Plantations [J]. Scientia Silvae Sinicae, 2019, 55(11): 126-136. |
[11] | Yun Zhang,Tao Liu,Tao Zhang,Letian Xie,Jianqin Huang,Zhengjia Wang,Yuanyuan Hu. Photosynthetic Characteristics of Pseudo-peel of Pecan Fruits [J]. Scientia Silvae Sinicae, 2019, 55(10): 10-18. |
[12] | Zhang Jiangtao, Yang Shuhong, Zhu Di, Zhu Yanlin, Liu Youquan. Physiological Response of Annual Grafted Seedlings of Poplar 2025 and Its Two Bud Mutation Varieties to Drought Stress and Evaluation of Drought Resistance [J]. Scientia Silvae Sinicae, 2018, 54(6): 33-43. |
[13] | Zhou Yanwei, Chen Jinhui, Lu Lu, Cheng Tielong, Yang Liming, Shi Jisen. Changes on Leaf Chloroplast Ultrastructure and Photosynthetic Characteristics of Liriodendron sino-americanum Somatic Embryo Regeneration Seedlings under Waterlogging Stress [J]. Scientia Silvae Sinicae, 2018, 54(3): 19-28. |
[14] | Chen Jun, Ai Xunru, Yao Lan, Chen Siyi. Point Pattern Analysis of Two Species of Cyclobalanopsis in Large Plot in Mulinzi Nature Reserve [J]. Scientia Silvae Sinicae, 2018, 54(10): 1-10. |
[15] | Shi Wenhui, Li Guolei, Su Shuchai, Liu Yong, Jia Liming, Shang Zhiguo. Combined Effects of Cotyledon Excision and Nursery Fertilization on Field Performance of Quercus variabilis Container Seedlings [J]. Scientia Silvae Sinicae, 2018, 54(1): 64-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||