Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (8): 172-179.doi: 10.11707/j.1001-7488.LYKX20240461
• Research papers • Previous Articles Next Articles
Honggang Zhao1,Weihong Sun2,Pengpeng Liang3,Zixu Zhao4,Jianping Sun5,Lei Le1,*()
Received:
2024-07-24
Online:
2025-08-25
Published:
2025-09-02
Contact:
Lei Le
E-mail:88537092@qq.com
CLC Number:
Honggang Zhao,Weihong Sun,Pengpeng Liang,Zixu Zhao,Jianping Sun,Lei Le. Effect of Laser Cutting of Oak Wood Based on Response Surface Methodology[J]. Scientia Silvae Sinicae, 2025, 61(8): 172-179.
Table 2
Experimental scheme and experimental results"
序号 Serial number | 影响因素Influencing factors | 缝深 Seam depth/ μm | 缝宽 Seam width/ μm | |||
含水率 Moisture content (A) (%) | 镜头高 Lens height (B)/ mm | 进给速度 Cutting speed (C)/ (mm·s?1) | 光强 Light intensity (D)(%) | |||
1 | 8.29 | 3 | 100 | 63 | 1 565 | 326 |
2 | 8.29 | 8 | 40 | 63 | 2 174 | 507 |
3 | 8.29 | 8 | 100 | 25 | 869 | 395 |
4 | 8.29 | 8 | 100 | 100 | 988 | 435 |
5 | 8.29 | 8 | 160 | 63 | 613 | 475 |
6 | 8.29 | 12.5 | 100 | 63 | 711 | 838 |
7 | 18.81 | 3 | 40 | 63 | 2 314 | 266 |
8 | 18.81 | 3 | 100 | 25 | 514 | 278 |
9 | 18.81 | 3 | 100 | 100 | 1 293 | 263 |
10 | 18.81 | 3 | 160 | 63 | 511 | 263 |
11 | 18.81 | 8 | 40 | 25 | 1 315 | 313 |
12 | 18.81 | 8 | 40 | 100 | 1 454 | 406 |
13 | 18.81 | 8 | 100 | 63 | 640 | 254 |
14 | 18.81 | 8 | 100 | 63 | 723 | 212 |
15 | 18.81 | 8 | 100 | 63 | 564 | 282 |
16 | 18.81 | 8 | 100 | 63 | 756 | 203 |
17 | 18.81 | 8 | 100 | 63 | 526 | 293 |
18 | 18.81 | 8 | 160 | 25 | 515 | 192 |
19 | 18.81 | 8 | 160 | 100 | 529 | 300 |
20 | 18.81 | 12.5 | 40 | 63 | 1 115 | 497 |
21 | 18.81 | 12.5 | 100 | 25 | 385 | 632 |
22 | 18.81 | 12.5 | 100 | 100 | 346 | 682 |
23 | 18.81 | 12.5 | 160 | 63 | 256 | 643 |
24 | 28.41 | 3 | 100 | 63 | 1 669 | 496 |
25 | 28.41 | 8 | 100 | 25 | 1 140 | 475 |
26 | 28.41 | 8 | 100 | 100 | 1 370 | 557 |
27 | 28.41 | 8 | 40 | 63 | 2 720 | 493 |
28 | 28.41 | 8 | 160 | 63 | 777 | 438 |
29 | 28.41 | 12.5 | 100 | 63 | 714 | 837 |
Table 3
Analysis of variance of crack depth regression equation"
来源Source | 平方和 Sum of squares | 自由 度df | 均方 Mean square | F | P |
方程Equation | 1.014E+07 | 14 | 7.240E+05 | 16.63 | <0.000 1 |
A | 1.803E+05 | 1 | 1.803E+05 | 4.14 | 0.061 2 |
B | 1.544E+06 | 1 | 1.544E+06 | 35.46 | <0.000 1 |
C | 5.239E+06 | 1 | 5.239E+06 | 120.33 | <0.000 1 |
D | 1.443E+05 | 1 | 1.443E+05 | 3.31 | 0.090 1 |
AB | 1 039.29 | 1 | 1 039.29 | 0.023 9 | 0.879 4 |
AC | 29 084.59 | 1 | 29 084.59 | 0.668 0 | 0.427 4 |
AD | 3 080.82 | 1 | 3 080.82 | 0.070 8 | 0.794 1 |
BC | 2.230E+05 | 1 | 2.230E+05 | 5.12 | 0.040 0 |
BD | 1.760E+05 | 1 | 1.760E+05 | 4.04 | 0.064 0 |
CD | 4 686.19 | 1 | 4 686.19 | 0.107 6 | 0.747 7 |
A2 | 1.759E+06 | 1 | 1.759E+06 | 40.40 | <0.000 1 |
B2 | 301.44 | 1 | 301.44 | 0.006 9 | 0.934 9 |
C2 | 9.781E+05 | 1 | 9.781E+05 | 22.47 | 0.000 3 |
D2 | 21 184.70 | 1 | 21 184.70 | 0.486 6 | 0.496 9 |
残差Residual | 6.096E+05 | 14 | 43 539.41 | ||
失拟项Lack-of-fit | 5.705E+05 | 10 | 57 045.09 | 5.84 | 0.051 9 |
误差项Error term | 39 100.80 | 4 | 9 775.20 | ||
总和Sum | 1.075E+07 | 28 |
Table 4
Gap width regression equation analysis of variance"
来源Source | 平方和 Sum of squares | 自由 度 df | 均方 Mean square | F | P |
方程Equation | 8.458E+05 | 14 | 60 416.54 | 17.43 | <0.000 1 |
A | 9 467.08 | 1 | 9 467.08 | 2.73 | 0.120 7 |
B | 4.212E+05 | 1 | 4.212E+05 | 121.48 | <0.000 1 |
C | 2 803.87 | 1 | 2 803.87 | 0.808 7 | 0.383 7 |
D | 9 971.53 | 1 | 9 971.53 | 2.88 | 0.112 0 |
AB | 7 994.90 | 1 | 7 994.90 | 2.31 | 0.151 1 |
AC | 115.55 | 1 | 115.55 | 0.033 3 | 0.857 8 |
AD | 411.03 | 1 | 411.03 | 0.118 6 | 0.735 7 |
BC | 4 783.99 | 1 | 4 783.99 | 1.38 | 0.259 7 |
BD | 1 191.53 | 1 | 1 191.53 | 0.343 7 | 0.567 0 |
CD | 74.77 | 1 | 74.77 | 0.021 6 | 0.885 3 |
A2 | 2.638E+05 | 1 | 2.638E+05 | 76.10 | <0.000 1 |
B2 | 2.076E+05 | 1 | 2.076E+05 | 59.87 | <0.000 1 |
C2 | 1 595.83 | 1 | 1 595.83 | 0.460 3 | 0.508 5 |
D2 | 7 043.80 | 1 | 7 043.80 | 2.03 | 0.176 0 |
残差Residual | 48 537.49 | 14 | 3 466.96 | ||
失拟项Lack-of-fit | 41 724.29 | 10 | 4 172.43 | 2.45 | 0.201 1 |
误差项Error term | 6 813.20 | 4 | 1 703.30 | ||
总和Sum | 8.944E+05 | 28 |
陈日强, 李长春, 杨贵军, 等. 无人机机载激光雷达提取果树单木树冠信息. 农业工程学报, 2020, 36 (22): 50- 59.
doi: 10.11975/j.issn.1002-6819.2020.22.006 |
|
Chen R Q, Li C C, Yang G J, et al. Extraction of crown information from individual fruit tree by UAV LiDAR. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (22): 50- 59.
doi: 10.11975/j.issn.1002-6819.2020.22.006 |
|
丁志文, 邢艳秋, 尹伯卿, 等. 融合无人机和地基激光雷达点云数据估测单木结构参数. 森林工程, 2024, 40 (1): 142- 151. | |
Ding Z W, Xing Y Q, Yin B Q, et al. Fusion of UAV and TLS LiDAR point cloud data for estimating individual tree structure parameters. Forest Engineering, 2024, 40 (1): 142- 151. | |
姜新波, 胡 昊, 刘九庆, 等. 纳秒水导激光加工木材工艺探讨. 林业科学, 2018, 54 (1): 121- 127.
doi: 10.11707/j.1001-7488.20180114 |
|
Jiang X B, Hu H, Liu J Q, et al. Discussion on the processing of wood by nanosecond water guide laser. Scientia Silvae Sinicae, 2018, 54 (1): 121- 127.
doi: 10.11707/j.1001-7488.20180114 |
|
李伟光, 张占宽. 微坑型微织构硬质合金表面对木材摩擦特性的影响. 林业科学, 2019, 55 (4): 136- 143.
doi: 10.11707/j.1001-7488.20190414 |
|
Li W G, Zhang Z K. The effect of micro-pits texture on the coefficient of friction between wood and cemented carbide. Scientia Silvae Sinicae, 2019, 55 (4): 136- 143.
doi: 10.11707/j.1001-7488.20190414 |
|
龙泳学, 陈庆轩, 赵梓旭, 等. 基于CMA1390型CO2激光切削机的水曲柳切削效果回归模型建立. 林业科学, 2024, 60 (11): 170- 176.
doi: 10.11707/j.1001-7488.LYKX20230453 |
|
Long Y X, Chen Q X, Zhao Z X, et al. Regression modeling of Fraxinus mandshurica cutting effect based on CMA1390 CO2 laser cutting machine. Scientia Silvae Sinicae, 2024, 60 (11): 170- 176.
doi: 10.11707/j.1001-7488.LYKX20230453 |
|
梁鹏鹏, 吴俊华, 赵洪刚, 等. 激光加工桦木切削效果分析. 林产工业, 2023, 60 (2): 30- 34. | |
Liang P P, Wu J H, Zhao H G, et al. Analysis of the cutting effect of laser processed birch. China Forest Products Industry, 2023, 60 (2): 30- 34. | |
梁鹏鹏, 孙耀星, 赵洪刚, 等. 以效果为目标的激光机技术参数优化组合. 林产工业, 2024, 61 (1): 31- 33, 78. | |
Liang P P, Sun Y X, Zhao H G, et al. Optimization combination of laser machine technical parameters aiming at effect. China Forest Products Industry, 2024, 61 (1): 31- 33, 78. | |
任长清, 李 响, 杨春梅, 等. LOM单板层积成型试验机激光切割工艺参数的分析与仿真. 林业机械与木工设备, 2019, 47 (3): 45- 48.
doi: 10.3969/j.issn.2095-2953.2019.03.011 |
|
Ren C Q, Li X, Yang C M, et al. Design and simulation of laser cutting process parameters of LOM veneer lamination forming test machines. Forestry Machinery & Woodworking Equipment, 2019, 47 (3): 45- 48.
doi: 10.3969/j.issn.2095-2953.2019.03.011 |
|
谭 波. 2011. 响应曲面法优化激光打孔工艺参数的研究. 武汉: 华中科技大学. | |
Tan B. 2011. Study on optimization of laser drilling parameters with response surface methodology. Wuhan: Huazhong University of Science and Technology. [in Chinese] | |
翁 斌, 张 超, 阙 云, 等. 基于响应面法的隧道复合式路面力学响应分析. 森林工程, 2024, 40 (2): 176- 187.
doi: 10.3969/j.issn.1006-8023.2024.02.019 |
|
Weng B, Zhang C, Que Y, et al. Mechanical response analysis of tunnel composite pavement based on response surface. Forest Engineering, 2024, 40 (2): 176- 187.
doi: 10.3969/j.issn.1006-8023.2024.02.019 |
|
晏颖杰, 范少辉, 官凤英. 地基激光雷达技术在森林调查中的应用研究进展. 世界林业研究, 2018, 31 (4): 42- 47. | |
Yan Y J, Fan S H, Guan F Y. Research progress in TLS technology in forest investigation. World Forestry Research, 2018, 31 (4): 42- 47. | |
赵洪刚, 乐 磊, 刘明利, 等. 拼花实木复合地板激光切割制备工艺研究. 北京林业大学学报, 2016, 38 (6): 110- 115. | |
Zhao H G, Le L, Liu M L, et al. Laser cutting preparation technology of solid wood parquet laminate flooring. Journal of Beijing Forestry University, 2016, 38 (6): 110- 115. | |
赵洪刚, 孙耀星, 高金贵, 等. 激光切割蒙古栎合理技术参数组合优化. 林业科学, 2017, 53 (12): 112- 119.
doi: 10.11707/j.1001-7488.20171212 |
|
Zhao H G, Sun Y X, Gao J G, et al. Combinatorial optimization of reasonable technical parameters for laser cutting oak. Scientia Silvae Sinicae, 2017, 53 (12): 112- 119.
doi: 10.11707/j.1001-7488.20171212 |
|
赵洪刚, 覃 胜, 赵梓旭, 等. 激光机加工落叶松技术参数的优化. 机床与液压, 2021, 49 (4): 27- 30. | |
Zhao H G, Qin S, Zhao Z X, et al. Optimization for parameters of larch laser processing technology. Machine Tool & Hydraulics, 2021, 49 (4): 27- 30. | |
赵 静, 钱 桦, 张厚江, 等. 激光雕刻木材工艺参数的研究. 木材加工机械, 2006, 17 (6): 15- 17.
doi: 10.3969/j.issn.1001-036X.2006.06.005 |
|
Zhao J, Qian H, Zhang H J, et al. Study on the technical paramers for laser carving wood. Wood Processing Machinery, 2006, 17 (6): 15- 17.
doi: 10.3969/j.issn.1001-036X.2006.06.005 |
|
赵永辉, 刘雪妍, 吕 勇, 等. 基于激光点云数据 的单木骨架三维重构. 森林工程, 2024, 40 (1): 128- 134. | |
Zhao Y H, Liu X Y, Lyu Y, et al. 3D reconstruction of single wood skeleton based on laser point cloud data. Forest Engineering, 2024, 40 (1): 128- 134. | |
Angın D, Tiryaki A E. 2016. Application of response surface methodology and artificial neural network on pyrolysis of safflower seed press cake. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(8): 1055−1061. | |
Barcikowski S, Koch G, Odermatt J. Characterisation and modification of the heat affected zone during laser material processing of wood and wood composites. Holz Als Roh- und Werkstoff, 2006, 64 (2): 94- 103.
doi: 10.1007/s00107-005-0028-1 |
|
Bolton D K, Coops N C, Wulder M A, et al. Assessing the impact of a snowstorm on forest structure in Ontario, Canada using a combination of Landsat time-series and airborne LiDAR data. Proceedings of the 13th International Conference on LiDAR Applications in Forestry, 2013, Beijing, China. | |
Calders K, Adams J, Armston J, et al. Terrestrial laser scanning in forest ecology: expanding the horizon. Remote Sensing of Environment, 2020, 251, 112102.
doi: 10.1016/j.rse.2020.112102 |
|
Fukuta S, Nomura M, Ikeda T, et al. UV laser machining of wood. European Journal of Wood & Wood Products, 2016, 74 (2): 261- 267. | |
Gräf S, Staupendahl G, Krämer A, et al. High percision materials processing using a novel Q-switched CO2 laser. Optics and Lasers in Engineering, 2014, (66): 152- 157. | |
Hao H J, Wang M L, Hao F Q. 2013. Multi-objective optimization of quality in laser cutting based on response surface model. Advanced Materials Research, 756/757/758/759: 3712-3716. | |
Li R R, Guo X L, Cao P X, et al. Optimization of laser cutting parameters for recombinant bamboo based on response surface methodology. Wood Research, 2016, 61 (2): 275- 285. | |
Madić M, Radovanović M, Manić M, et al. Optimization of CO2 laser cutting process using taguchi and dual response surface methodology. Tribology in Industry, 2014, 36 (3): 236- 243. | |
Peng X, Zhao A J, Chen Y F, et al. Tree height measurements in degraded tropical forests based on UAV-LiDAR data of different point cloud densities: a case study on Dacrydium pierrei in China. Forests, 2021, 12 (3): 328.
doi: 10.3390/f12030328 |
|
Ružiak I, Igaz R, Kubovský I, et al. Prediction of the effect of CO2 laser cutting conditions on spruce wood cut characteristics using an artificial neural network. Applied Sciences, 2022, 12 (22): 11355.
doi: 10.3390/app122211355 |
[1] | Chenhui Yang,Shoumin Cheng,Xieyu Gao,Lihu Dong,Yuanshuo Hao. Stem Parameter Estimation Method for Larix olgensis Based on TLS Data of Stem Shape Fitting [J]. Scientia Silvae Sinicae, 2025, 61(8): 154-163. |
[2] | Haobo Zhao,Zhongping Feng,Chengzhong Zheng,Yongbin Qiu,Linhui An,Guoqing Jin,zhen Zhang. Family-Environment Interaction and Key Influencing Factors of Growth Traits of Cupressus funebris [J]. Scientia Silvae Sinicae, 2025, 61(6): 120-129. |
[3] | Xiaoling Yan,Qin Hao,Zi Shen,Yujia Zhang,Xiaoqin Guo. Expression, Protein Interaction and Biological Function Analysis of PheFT1 Gene in Moso Bamboo [J]. Scientia Silvae Sinicae, 2025, 61(4): 140-152. |
[4] | Xiaoning Ge,Xinqiao Xu,Huaiqing Zhang,Jing Zhang,Jie Yang,Zeyu Cui,Rurao Fu,Jinjie Liang,Tianhua Zou,Linlong Wang,Yang Liu. Progress and Reflection on Genotype-Environment Interaction Algorithms in Forest Tree Breeding [J]. Scientia Silvae Sinicae, 2025, 61(3): 1-15. |
[5] | Liyang Yao,Yue Zhu,Yaning Wang,Shuai Pang. Impact of Tire Size on the Driving Performance of Small Wheeled Mobile Platforms in Forest [J]. Scientia Silvae Sinicae, 2025, 61(2): 180-189. |
[6] | Fanbin Kong,Yu Lu,Caiyao Xu. Digital Economy Development, Value Realization of Forest Ecological Products, and Urban-Rural Income Gap [J]. Scientia Silvae Sinicae, 2024, 60(5): 1-21. |
[7] | Yu Zhang,Huaiqing Zhang,Feng An,Ling Jiang,Ting Yun. A Quantitative Analysis Method of Solar Shortwave Radiation within Forest Canopy Based on a Computer Simulation Model [J]. Scientia Silvae Sinicae, 2024, 60(4): 16-30. |
[8] | Yusup Asadilla,Halik Ümüt,Dilixiati Babierjiang,Cheng Lei,Jianxin Wei,Abliz Abdulla,Jianluo Cui,Xixiang He. Spatial Distribution Pattern and Intraspecific Competition of Populus euphratica Population in the Lower Reaches of the Tarim River Based on LiDAR Data [J]. Scientia Silvae Sinicae, 2024, 60(4): 31-39. |
[9] | Zhang Yongyue, Shi Jiangtao, Fu Zongying, Lu Yun. Research Progress of Cellulose Self-Healing Hydrogels [J]. Scientia Silvae Sinicae, 2024, 60(2): 128-138. |
[10] | Yongxue Long,Qingxuan Chen,Zixu Zhao,Haomin Zhao,Honggang Zhao,Qingzeng Li. Regression Modeling of Fraxinus mandshurica Cutting Effect Based on CMA1390 CO2 Laser Cutting Machine [J]. Scientia Silvae Sinicae, 2024, 60(11): 170-176. |
[11] | Long Shisheng, Zeng Siqi, Yang Shengyang. Maximum Density-Size Line for Oak Natural Forest Based on Improved Stand Density Index [J]. Scientia Silvae Sinicae, 2023, 59(9): 13-22. |
[12] | Chang Zhang,Wenjing Han,Cheng Wang. Effects of Plant Color on Visual Attraction for Chaobai River’s Summer and Autumn Urban Riparian Landscape [J]. Scientia Silvae Sinicae, 2023, 59(8): 30-39. |
[13] | Zhuhua Wu,Juan Song,Shulin Zhu,Xing Zhao,Xuexiang Yang,Jiahong Ren,Fengmao Chen. Effects of Plant Growth-Promoting Microorganisms on Rhizosphere Microbial Community and the Leaf Pigment Composition of Liquidambar formosana [J]. Scientia Silvae Sinicae, 2023, 59(12): 125-136. |
[14] | Shuzi Zhang,Jianting Yin,Qiwen Ren,Shubin Zhang,Xin Wang,Liandi Li,Jun Bi. Effect of Dominant Species on Diversity Pattern of Neighbor Species in Coniferous-Broadleaved Mixed Forest in Northern Hebei Mountains [J]. Scientia Silvae Sinicae, 2022, 58(4): 32-39. |
[15] | Zhiyang Li,Xiaolin Chen,Lili Li,Shiping Xu,Yuanhao He. Transcriptome Analysis of Camellia olefolia Root and the Endophytic Bacteria Bacillus Subtilis at the Early Stage of Their Interaction [J]. Scientia Silvae Sinicae, 2022, 58(3): 48-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||