Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (4): 117-131.doi: 10.11707/j.1001-7488.LYKX20210919
• Research papers • Previous Articles Next Articles
Ruofeng Jia1(),Qi Gu1,Yiming Sun1,Pengfei Lu1,*,Shibo Ju2,Haili Qiao2
Received:
2021-12-23
Online:
2023-04-25
Published:
2023-07-05
Contact:
Pengfei Lu
E-mail:jrf456789@163.com
CLC Number:
Ruofeng Jia,Qi Gu,Yiming Sun,Pengfei Lu,Shibo Ju,Haili Qiao. Differences in Bacterial Diversity and Key Cellulose-Degrading Bacteria in the Intestinal Tract of Anoplophora glabripennis (Coleoptera: Cerambycidae)Larvae Feeding on Fraxinus pennsylvanica and Salix matsudana[J]. Scientia Silvae Sinicae, 2023, 59(4): 117-131.
Table 2
NCBI comparison for representative cellulose-degrading strains from gut of larval Anoplophora glabripennis feeding on Fraxinus pennsylvanicas"
编号 No. | 门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus | 种 Species | NCBI登陆号 NCBI accession No. | 相似度 Similarity(%) |
BLY-30 | 放线菌门 Actinobacteria | 放线菌纲 Actinobacteria | 微球菌目 Micrococcales | 微杆菌科 Microbacteriaceae | 微杆菌属 Microbacterium | 叶片微杆菌 Microbacterium foliorum | CP041040.1 | 100.00 |
BLY-35 | 氧化微杆菌 Microbacterium oxydans | HQ202812.1 | 99.65 | |||||
BLY-34 | 叶球形微杆菌 Microbacterium phyllosphaerae | EU370409.1 | 98.80 | |||||
BLY-10 | 氧化烃微杆菌 Microbacterium hydrocarbonoxydans | MN685257.1 | 99.72 | |||||
BLY-19 | 氧化烃微杆菌 Microbacterium hydrocarbonoxydans | JF700471.1 | 99.79 | |||||
BLY-18 | 微杆菌 Microbacterium sp. | KM253118.1 | 99.78 | |||||
BLY-36 | 微杆菌 Microbacterium sp. | KF454846.1 | 99.72 | |||||
BLY-1 | 纤维单胞菌科 Cellulomonadaceae | 纤维素单胞菌属 Cellulomonas | 产黄纤维单胞菌 Cellulomonas flavigena | KF040991.1 | 99.93 | |||
BLY-28 | 纤维单胞菌 Cellulomonas sp. | JQ660025.1 | 99.50 | |||||
BLY-26 | 厚壁菌门 Firmicutes | 芽孢杆菌纲 Bacilli | 芽孢杆菌目 Bacillales | 芽孢杆菌科 Bacillaceae | 芽孢杆菌属 Bacillus | 芽孢杆菌 Bacillus sp. | MG371992.1 | 99.93 |
BLY-25 | 类芽孢杆菌科 Paenibacillaceae | 类芽孢杆菌属 Paenibacillus | 类芽孢杆菌 Paenibacillus sp. | JF768724.1 | 100.00 | |||
BLY-3 | 变形菌门 Proteobacteria | γ-变形菌纲 Gammaproteobacteria | 假单胞杆菌目 Pseudomonadales | 假单胞菌科 Pseudomonadaceae | 假单胞菌属 Pseudomonas | 类芽孢杆菌 Pseudomonas sp. | MH815093.1 | 99.86 |
BLY-11 | 类芽孢杆菌 Pseudomonas sp. | DQ991143.2 | 99.72 | |||||
BLY-23 | 类芽孢杆菌 Pseudomonas sp. | KY852302.1 | 100.00 | |||||
BLY-21 | 拟杆菌门 Bacteroidetes | 噬几丁质杆菌纲 Chitinophagia | 噬几丁质菌目 Chitinophagales | 噬几丁质菌科 Chitinophagaceae | Niastella | Niabella hibiscisoli | NR_156824.1 | 98.23 |
BLY-31 | 拟杆菌纲 Bacteroidia | 鞘脂杆菌目 Sphingobacteriales | 鞘脂杆菌科 Sphingobacteriaceae | 鞘氨醇杆菌属 Sphingobacterium | 鞘氨醇杆菌 Sphingobacterium sp. | KC252768.2 | 97.49 |
Table 3
Cellulose degradability of cellulose-degrading bacteria of intestinal homogenate of larval Anoplophora glabripennis feeding on Fraxinus pennsylvanicas"
菌株编号 Strain No. | 细菌类群 Species of bacteria | NCBI登陆号 NCBI accession No. | D/d |
BLY-30 | 叶片微杆菌 Microbacterium foliorum | CP041040.1 | 2.31 |
BLY-35 | 氧化微杆菌 Microbacterium oxydans | HQ202812.1 | 2.081 |
BLY-34 | 叶球形微杆菌 Microbacterium phyllosphaerae | EU370409.1 | 3.216 |
BLY-5 | 氧化烃微杆菌 Microbacterium hydrocarbonoxydans | MN685257.1 | 2.54 |
BLY-10 | 氧化烃微杆菌Microbacterium hydrocarbonoxydans | MN685257.1 | 2.86 |
BLY-19 | 氧化烃微杆菌 Microbacterium hydrocarbonoxydans | JF700471.1 | 2.826 |
BLY-20 | 氧化烃微杆菌 Microbacterium hydrocarbonoxydans | JF700471.1 | 2.549 |
BLY-18 | 微杆菌 Microbacterium sp. | KM253118.1 | 2.5 |
BLY-36 | 微杆菌 Microbacterium sp. | KF454846.1 | 4.37 |
BLY-1 | 产黄纤维单胞菌 Cellulomonas flavigena 1 | KF040991.1 | 5.594 |
BLY-2 | 产黄纤维单胞菌 Cellulomonas flavigena 1 | KF040991.1 | 5.444 |
BLY-4 | 产黄纤维单胞菌 Cellulomonas flavigena | KF040991.1 | 3.333 |
BLY-7 | 产黄纤维单胞菌 Cellulomonas flavigena | KF040991.1 | 3.36 |
BLY-8 | 产黄纤维单胞菌 Cellulomonas flavigena | KF040991.1 | 3.965 |
BLY-9 | 产黄纤维单胞菌 Cellulomonas flavigena | KF040991.1 | 3.811 |
BLY-14 | 产黄纤维单胞菌 Cellulomonas flavigena | KF040991.1 | 5.2 |
BLY-15 | 产黄纤维单胞菌 Cellulomonas flavigena | KF040991.1 | 3.882 |
BLY-24 | 产黄纤维单胞菌 Cellulomonas flavigena | KF040991.1 | 4.515 |
BLY-28 | 纤维单胞菌 Cellulomonas sp. | JQ660025.1 | 3.106 |
BLY-29 | 纤维单胞菌 Cellulomonas sp. | JQ660025.1 | 2.865 |
BLY-26 | 芽孢杆菌 Bacillus sp. | MG371992.1 | 2.087 |
BLY-25 | 类芽孢杆菌 Paenibacillus sp. | JF768724.1 | 5.233 |
BLY-3 | 假单胞菌 Pseudomonas sp. 1 | MH815093.1 | 6.645 |
BLY-12 | 假单胞菌 Pseudomonas sp. 1 | MH815093.1 | 9.836 |
BLY-11 | 假单胞菌 Pseudomonas sp. | DQ991143.2 | 1.362 |
BLY-13 | 假单胞菌 Pseudomonas sp. | KY852302.1 | 2.029 |
BLY-23 | 假单胞菌 Pseudomonas sp. | KY852302.1 | 2.171 |
BLY-21 | Niabella hibiscisoli | NR_156824.1 | 2.649 |
BLY-22 | Niabella hibiscisoli | NR_156824.1 | 2.462 |
BLY-31 | 鞘氨醇杆菌 Sphingobacterium sp. | KC252768.2 | 1.288 |
BLY-33 | 鞘氨醇杆菌 Sphingobacterium sp. | KC252768.2 | 1.438 |
Table 1
Classification system of BL and HL and abundance values of each genus"
门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus | 丰度值 Bacterial abundance | |
BL | HL | |||||
变形菌门 Proteobacteria | α-变形菌纲 Alphaproteobacteria | 根瘤菌目 Rhizobiales | 德沃斯氏菌科 Devosiaceae | 德沃斯菌属 Devosia | 5 | 1 |
Kaistiaceae | Kaistia | 2 | 0 | |||
根瘤菌科 Rhizobiaceae | Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium | 2 | 6 | |||
苍白杆菌属 Ochrobactrum | 11 | 1 | ||||
红细菌目 Rhodobacterales | 红细菌科 Rhodobacteraceae | 大不里士菌属Tabrizicola | 16 | 0 | ||
副球菌属Paracoccus | 6 | 0 | ||||
γ-变形菌纲 Gammaproteobacteria | 肠杆菌目 Enterobacteriales | 肠杆菌科 Enterobacteriaceae | 肠杆菌属 Enterobacter | 228 | 1383 | |
Gibbsiella | 97 | 214 | ||||
拉乌尔菌属 Raoultella | 12739 | 14029 | ||||
未知属 Unclassified | 331 | 6204 | ||||
假单胞菌目 Pseudomonadales | 莫拉氏菌科 Moraxellaceae | 不动杆菌属 Acinetobacter | 0 | 104 | ||
假单胞菌科 Pseudomonadaceae | 假单胞菌属 Pseudomonas | 4 | 3738 | |||
黄单胞菌目 Xanthomonadales | 黄单胞菌科 Xanthomonadaceae | 藤黄单胞菌属Luteimonas | 11 | 0 | ||
Betaproteobacteriales | 伯克氏菌科 Burkholderiaceae | 青枯菌属 Ralstonia | 0 | 1 | ||
嗜异生质菌属 Xenophilus | 8 | 0 | ||||
嗜甲基菌科 Methylophilaceae | Methylopila | 1 | 0 | |||
未知目 Unclassified | 未知科 Unclassified | 未知属 Unclassified | 3 | 624 | ||
厚壁菌门 Firmicutes | 芽孢杆菌纲 Bacilli | 乳杆菌目 Lactobacillales | 链球菌科 Streptococcaceae | 乳球菌属 Lactococcus | 20581 | 0 |
肠球菌科 Enterococcaceae | 肠球菌属 Enterococcus | 1603 | 17484 | |||
乳酸菌科 Lactobacillaceae | 乳杆菌属 Lactobacillus | 8 | 1 | |||
放线菌门 Actinobacteria | 放线菌纲 Actinobacteria | 微球菌目 Micrococcales | 微杆菌科 Microbacteriaceae | 微杆菌属 Microbacterium | 26 | 8 |
亮杆菌属 Leucobacter | 3 | 1 | ||||
纤维单胞菌科 Cellulomonadaceae | 纤维素单胞菌属 Cellulomonas | 0 | 989 | |||
微球菌科 Micrococcaceae | Glutamicibacter | 0 | 31 | |||
表皮菌科 Dermabacteraceae | 短状杆菌属 Brachybacterium | 0 | 1 | |||
未知科 Unclassified | 未知属 Unclassified | 13 | 0 | |||
未知科 Unclassified | 未知属 Unclassified | 2 | 0 | |||
丙酸杆菌目 Propionibacteriales | 丙酸杆菌科 Propionibacteriaceae | Propionicicella | 6 | 0 | ||
棒状菌目 Corynebacteriales | 诺卡氏菌科 Nocardiaceae | 红球菌属Rhodococcus | 0 | 3 | ||
戈登氏菌属Gordonia | 5 | 9 | ||||
棒状杆菌科 Corynebacteriaceae | 棒状杆菌属Corynebacterium_1 | 0 | 6 | |||
土壤红杆菌目 Solirubrobacterales | 土壤红杆菌科 Solirubrobacteraceae | Patulibacter | 1 | 0 | ||
放线菌目 Actinomycetales | 放线菌科 Actinomycetaceae | 放线菌属 Actinomyces | 21 | 0 | ||
双歧杆菌目 Bifidobacteriales | 双歧杆菌科 Bifidobacteriaceae | 双歧杆菌属 Bifidobacterium | 13 | 0 | ||
弗兰克氏菌目 Frankiales | 中村氏菌科 Nakamurellaceae | 中村菌属 Nakamurella | 6 | 0 | ||
拟杆菌门 Bacteroidetes | 拟杆菌纲 Bacteroidia | 黄杆菌目 Flavobacteriales | 藏红花黄色线菌科 Crocinitomicaceae | Fluviicola | 2 | 0 |
鞘脂杆菌目 Sphingobacteriales | 鞘脂杆菌科 Sphingobacteriaceae | 鞘氨醇杆菌属 Sphingobacterium | 22 | 0 | ||
蓝细菌门 Cyanobacteria | 产氧光细菌纲 Oxyphotobacteria | 叶绿体 Chloroplast | 缺少信息 Norank | 缺少信息 Norank | 1 | 0 |
缺少信息 Norank | 缺少信息 Norank | 0 | 9 | |||
未知门 Unclassified | 未知纲 Unclassified | 未知目 Unclassified | 未知科 Unclassified | 未知属 Unclassified | 4 | 0 |
合计 Total | 35781 | 44847 |
曹 娜, 祝文博, 黄 麒, 等. 2种拮抗云杉梢枯病细菌的抑菌活性研究. 森林工程, 2021, 37 (3): 72- 78.
doi: 10.16270/j.cnki.slgc.2021.03.010 |
|
Cao N, Zhu W B, Huang Q, et al. Antibacterial activity study of two antagonistic bacteria of Dothiorella gregaria . Forest Engineering, 2021, 37 (3): 72- 78.
doi: 10.16270/j.cnki.slgc.2021.03.010 |
|
曹月青, 殷幼平, 董亚敏, 等. 桑粒肩天牛肠道纤维素分解细菌的分离和鉴定. 微生物学通报, 2001, 28 (1): 9- 11.
doi: 10.3969/j.issn.0253-2654.2001.01.003 |
|
Cao Y Q, Yin Y P, Dong Y M, et al. Isolation and identification of the cellulose-utilizing bacteria from the gut of Apriona germati (Hope) . Microbiology China, 2001, 28 (1): 9- 11.
doi: 10.3969/j.issn.0253-2654.2001.01.003 |
|
陈金华. 2008. 桑粒肩天牛幼虫肠道微生物多样性的分子生物学方法研究. 重庆: 重庆大学. | |
Chen J H. 2008. Study on diversity of gut flora of Apriona germari (Hope) (Coleoptera: Cerambycidae) larvae, by molecular methods. Chongqing: Chongqing University. [in Chinese] | |
陈 伟. 2020. 三种跳虫肠道菌群的多样性分析及其功能研究. 哈尔滨: 东北农业大学. | |
Chen W. 2020. Diversity analysis and function study of intestinal microbiota in three springtail species. Harbin: Northeast Agricultural University. [in Chinese] | |
董亚敏. 2001. 星天牛幼虫木聚糖的消化机制及β-1, 4-木聚糖酶的纯化与酶学特性. 重庆: 西南农业大学. | |
Dong Y M. 2001. Xylan-digesting Mechanism of Anoplophora chinensis larvae, and purification of β-1, 4-xylanase and enzymatic properties. Chongqing: Southwest Agricultural University. [in Chinese] | |
方 亚. 2016. 褐纹甘蔗象肠道菌群的结构及其对宿主营养分配的影响. 福建: 福建农林大学. | |
Fang Y. 2016. The structure of gut microbiota associated with Rhabdoscelus lineaticollis (Heller) and its effect on the host nutrition allocation. Fujian: Fujian Agriculture and Forestry University. [in Chinese] | |
傅慧静. 2017. 松墨天牛肠道细菌多样性和粘质沙雷氏菌木质素降解特性的研究. 福州: 福建农林大学. | |
Fu H J. 2017. Studies on bacteria diversity in the gut of Monochamus alternatus hope and lignin-degradation characteristics of Serratia marcescen. Fuzhou: Fujian Agriculture and Forestry University. [in Chinese] | |
谷 奇, 贾若峰, 李 涵, 等. 2022. 基于植物代谢组学和昆虫肠道细菌分析光肩星天牛的寄主适应性. 植物保护学报, 49(6): 1750–1763. | |
Gu Q, Jia R F, Li H, et al. 2022. Host adaptability of Anoplophora glabripennis based on metabolomics and insect intestinal bacteria. Journal of Plant Protection, 49(6): 1750–1763. [in Chinese] | |
关 哲. 2010. 哈尔滨市光肩星天牛发生危害调查研究. 哈尔滨: 黑龙江大学. | |
Guan Z. 2010. Investigation on occurrence and damage of Anoplophora glabripennis in Harbin. Harbin: Heilongjiang University. [in Chinese] | |
何正波, 殷幼平, 曹月青, 等. 2001. 桑粒肩天牛幼虫肠道菌群的研究. 微生物学报, 41(6): 741−744. | |
He Z B, Yin Y P, Cao Y Q, et al. 2001. Study on the Apriona germari (hope) larvae’s intestinal bacterial flora. Microbiology China, 41(6): 741−744. [in Chinese] | |
胡 霞. 2014. 华山松大小蠹肠道微生物群落多样性与幼虫肠道纤维素降解菌的研究. 杨凌: 西北农林科技大学. | |
Hu X. 2014. Gut-associated microbiota diversity of the white pine beetle (Dendroctonus armandi) and cellulolytic microbial community in its larval gut. Yangling: Northwest A&F University. [in Chinese] | |
胡 霞, 傅慧静, 李俊楠, 等. 松墨天牛幼虫肠道纤维素降解细菌的分离与鉴定. 福建农林大学学报(自然科学版), 2018, 47 (3): 322- 328.
doi: 10.13323/j.cnki.j.fafu(nat.sci.).2018.03.009 |
|
Hu X, Fu H J, Li J N, et al. Isolation and identification of cellulolytic bacteria associated with the gut of Monochamus alternatus larvae . Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47 (3): 322- 328.
doi: 10.13323/j.cnki.j.fafu(nat.sci.).2018.03.009 |
|
胡艳平, 王 磊, 曹平华, 等. 纤维素酶产生菌的筛选、其酶学性质及对饲料粗纤维降解效果的研究. 饲料工业, 2013, 34 (8): 21- 27. | |
Hu Y P, Wang L, Cao J H, et al. Study of screening of a strain producing cellulase, its enzymatic properties and the degradation rate of crude fiber in the feed. Feed industry magazine, 2013, 34 (8): 21- 27. | |
黄胜威. 2012. 暗黑鳃金龟幼虫肠道微生物分子多态性及纤维素降解菌多样性研究. 武汉: 华中农业大学. | |
Huang S W. 2012. Study on microbiota diversity and cellulolytic bacterial community in the hindgut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Wuhan: Huazhong Agricultural University. [in Chinese] | |
黄婉秋. 2020. 白星花金龟幼虫肠道中纤维素降解菌的筛选及其作用. 北京: 中国农业科学院. | |
Huang W Q. 2020. Screening and analysis of cellulose degrading microbial strains from intestinal tract of Protaetia brevitarsis larva. Beijing: Chinese Academy of Agricultural Sciences. [in Chinese] | |
黄婉秋, 石冬冬, 蔡红英, 等. 白星花金龟幼虫肠道中纤维素降解菌的筛选及其全基因组分析. 中国农业科技导报, 2021, 23 (6): 51- 58.
doi: 10.13304/j.nykjdb.2019.0891 |
|
Huang W Q, Shi D D, Cai H Y, et al. Identification and genome analysis of a cellulose degrading strain from the intestinal tract of Protaetia brevitarsis Larva . Journal of Agricultural Science and Technology, 2021, 23 (6): 51- 58.
doi: 10.13304/j.nykjdb.2019.0891 |
|
李浩培, 吕 飞, 毕拥国, 等. 2020. 我国林业重要蛀干害虫光肩星天牛研究进展, 林业与生态科学, 35(1): 1-9. | |
Li H P, Lu F, Bi Y G, et al. 2020. Review on the serious wood-boring pest Anoplophora glabripennis in forestry of China. Forestry and Ecological Sciences, 35(1): 1-9. [in Chinese] | |
刘晨娟, 蔡 皓, 李 庆, 等. 桑粒肩天牛肠道木质纤维素分解细菌的分离和鉴定. 化学与生物工程, 2010, 27 (7): 66- 68, 91.
doi: 10.3969/j.issn.1672-5425.2010.07.019 |
|
Liu C J, Cai H, Li Q, et al. Isolation and identification of a lignocellulose-utilizing bacterium from the gut of Apriona Germari . Chemistry & Bioengineering, 2010, 27 (7): 66- 68, 91.
doi: 10.3969/j.issn.1672-5425.2010.07.019 |
|
刘辉芳, 伊红珊, 张 寰. 光肩星天牛对不同柳树选择性的研究. 安徽农业科学, 2009, 37 (15): 7053- 7055.
doi: 10.3969/j.issn.0517-6611.2009.15.097 |
|
Liu H F, Yi H S, Zhang H. Studies on the selectivity of Anoplophora glabripennis to different Willows . Journal of Anhui Agricultural Sciences, 2009, 37 (15): 7053- 7055.
doi: 10.3969/j.issn.0517-6611.2009.15.097 |
|
桑巴叶, 王爱静, 史彦江, 等. 新疆黄斑星天牛的生物学特性研究. 新疆农业科学, 2010, 47 (6): 1126- 1131.
doi: 10.6048/j.issn.1001-4330.2010.06.014 |
|
Sang B Y, Wang A J, Shi Y J, et al. Study on the biological characteristics of Anoplophora nobilis Ganglbauerdou in Xinjiang. Xinjiang Agricultural Sciences, 2010, 47 (6): 1126- 1131.
doi: 10.6048/j.issn.1001-4330.2010.06.014 |
|
圣 平. 2014. 暗黑鳃金龟不同发育阶段肠道微生物及糖苷水解酶多样性研究. 武汉: 华中农业大学. | |
Sheng P. 2014. Diversities of gut microbes and glycoside hydrolases in different developmental stages of Holotrichia parallela. Wuhan: Huazhong Agricultural University. [in Chinese] | |
王金华, 熊 智, 王 芬, 等. 云秃蝗肠道产纤维素酶菌株的筛选. 湖北农业科学, 2010, 49 (4): 874- 878.
doi: 10.3969/j.issn.0439-8114.2010.04.034 |
|
Wang J H, Xiong Z, Wang F, et al. Isolation of cellulase producing strains in alimentary canal of Yunnanacris yunnaneus . Hubei Agricultural Sciences, 2010, 49 (4): 874- 878.
doi: 10.3969/j.issn.0439-8114.2010.04.034 |
|
王盼星, 陶施淼, 薛 藩. 纤维素降解菌研究进展. 绿色科技, 2018, (12): 161- 163.
doi: 10.16663/j.cnki.lskj.2018.12.061 |
|
Wang P X, Tao S M, Xue P. Advances in cellulose-degrading bacteria and fungi. Journal of Green Science and Technology, 2018, (12): 161- 163.
doi: 10.16663/j.cnki.lskj.2018.12.061 |
|
王 哲, 苑克英, 王喜明. 内蒙古包头市光肩星天牛危害情况及年生活史. 内蒙古农业大学学报(自然科学版), 2016, 37 (1): 87- 96.
doi: 10.16853/j.cnki.1009-3575.2016.01.015 |
|
Wang Z, Wan K Y, Wang X M. Investitation of damages and annual life history of Anoplophora glabripennis (Motsch . ) in Baotou in the Inner Mongolia Autonomous Region. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2016, 37 (1): 87- 96.
doi: 10.16853/j.cnki.1009-3575.2016.01.015 |
|
王志刚, 阎浚杰, 刘玉军, 等. 西藏南部光肩星天牛发生情况调查报告. 东北林业大学学报, 2003, (4): 70- 71.
doi: 10.3969/j.issn.1000-5382.2003.04.027 |
|
Wang Z G, Yan J J, Liu Y J, et al. Investigation of Anoplophora glabripennis in Southern Tibet. Journal of Northeast Forestry University, 2003, (4): 70- 71.
doi: 10.3969/j.issn.1000-5382.2003.04.027 |
|
王志刚. 2004. 中国光肩星天牛发生动态及治理对策研究. 哈尔滨: 东北林业大学. | |
Wang Z G. 2004. Study on the occurrence dynamics of Anoplophora glabripennis (Coleoptera: Cerambycidae) and its control measures. Harbin: Northeast Forestry University. [in Chinese] | |
王紫薇. 2016. 光肩星天牛对海防林中五种植物寄主选择的行为研究. 杭州: 浙江农林大学. | |
Wang Z W. 2016. The study of behavior the host selection of Anoplophora glabripennis to five kinds of plants. Hangzhou: Zhejiang A&F University. [in Chinese] | |
萧刚柔. 1992. 中国森林昆虫. 北京: 中国林业出版社. | |
Xiao G R. 1992. Chinese Forest Insects. Beijing: China Forestry Publishing House. [in Chinese] | |
谢骜李畅. 2020. 桑天牛产纤维素酶细菌的分离及其内切葡聚糖酶基因在乳酸杆菌中的表达. 杨凌: 西北农林科技大学. | |
Xie A L C. 2020. Isolation of cellulase bacteria from Apriona germari and expression of endoglucanase gene in lactobacillus. Yangling: Northwest A&F University. [in Chinese] | |
阎雄飞, 刘永华. 4种寄主对光肩星天牛成虫体重、寿命、产卵量和孵化率的影响研究. 中国农学通报, 2012, 28 (25): 52- 56.
doi: 10.3969/j.issn.1000-6850.2012.25.010 |
|
Yan X F, Liu Y H. Host plant effects on weight, longevity, fecundity and hatching rate of Anoplophora glabripennis Motschulsky . Chinese Agricultural Science Bulletin, 2012, 28 (25): 52- 56.
doi: 10.3969/j.issn.1000-6850.2012.25.010 |
|
阎雄飞, 万 涛, 刘永华. 4种寄主对光肩星天牛成虫解毒酶活性影响. 中国农学通报, 2016, 32 (14): 79- 83.
doi: 10.11924/j.issn.1000-6850.casb15120044 |
|
Yan X F, Wan T, Liu Y H. Four host trees affecting detoxification enzymes activities in adult Anoplophora glabripennis . Chinese Agricultural Science Bulletin, 2016, 32 (14): 79- 83.
doi: 10.11924/j.issn.1000-6850.casb15120044 |
|
杨振德, 方小英, 段慧娟, 等. 云斑白条天牛幼虫肠道纤维素降解菌的分离鉴定及产酶条件的优化. 生物资源, 2021, 43 (2): 153- 159. | |
Yang Z D, Fang X Y, Duan H J, et al. Isolation and identification of cellulolytic bacteria and optimization of enzymatic production conditions in the intestinal tract of the larva of Batocera lineaolata (Chaevroat) . Biotic Resources, 2021, 43 (2): 153- 159. | |
杨忠岐, 王小艺, 张翌楠, 等. 2018. 以生物防治为主的综合控制我国重大林木病虫害研究进展. 中国生物防治学报, 34(2): 163–183. | |
Yang Z Q, Wang X Y, Zhang Y N, et al. 2018. Research advances of Chinese major forest pests by integrated management based on biological control. Chinese Journal of Biological Control, 34(2): 163–183. [in Chinese] | |
于凯悦, 李唯一, 刘宇航, 等. 不同处理方式对土壤细菌多样性的影响. 森林工程, 2020, 36 (3): 7- 11.
doi: 10.3969/j.issn.1006-8023.2020.03.002 |
|
Yu K Y, Li W Y, Liu Y H, et al. Effects of different treatments on soil bacterial diversity. Forest Engineering, 2020, 36 (3): 7- 11.
doi: 10.3969/j.issn.1006-8023.2020.03.002 |
|
周峻沛. 2010. 云斑天牛胃肠道内共生细菌来源的纤维素酶和半纤维素酶的初步研究. 北京: 中国农业科学院. | |
Zhou J P. 2010. Preliminary study on cellulases and hemicellulases from symbiotic bacteria hardbored in the gut of bactocera horsfieldi larvae. Beijing: Chinese Academy of Agricultural Sciences. [in Chinese] | |
Ali S S, Mustafa A M, Sun J Z. 2021. Wood-feeding termites as an obscure yet promising source of bacteria for biodegradation and detoxification of creosote-treated wood along with methane production enhancement. Bioresource Technology, 338: 125521. | |
Ayayee P, Rosa C, Ferry J G, et al. Gut microbes contribute to nitrogen provisioning in a wood-feeding cerambycid. Environmental Entomology, 2014, 43 (4): 903- 912.
doi: 10.1603/EN14045 |
|
Ayayee P A, Larsen T, Rosa C, et al. Essential amino acid supplementation by gut microbes of a wood-feeding cerambycid. Environmental Entomology, 2016, 45 (1): 66- 73.
doi: 10.1093/ee/nvv153 |
|
Bhuyan P M, Sandilya S P, Nath P K, et al. 2018. Optimization and characterization of extracellular cellulase produced by Bacillus pumilus MGB05 isolated from midgut of Muga silkworm (Antheraea assamensis Helfer). Journal of Asia-Pacific Entomology, 21(4): 1171−1181 | |
Briones-Roblero C I, Rodriguez-Diaz R, Santiago-Cruz J A, et al. Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae) . Folia Microbiologica, 2017, 62(1), 1- 9.
doi: 10.1007/s12223-016-0469-4 |
|
Calumby R J N, de Almeida L M, de Barros Y N, et al. 2022. Characterization of cultivable intestinal microbiota in Rhynchophorus palmarum Linnaeus (Coleoptera: Curculionidae) and determination of its cellulolytic activity. Archives of Insect Biochemistry and Physiology, 110(2): e21881. | |
Cardona F, Andrés-Lacueva C, Tulipani S, et al. Benefits of polyphenols on gut microbiota and implications in human health. Journal of Nutritional Biochemistry, 2013, 24 (8): 1415- 1422.
doi: 10.1016/j.jnutbio.2013.05.001 |
|
Cazemier A E, Verdoes J C, van Ooyen A J, et al. 1999. Molecular and biochemical characterization of two xylanase-encoding genes from Cellulomonas pachnodae. Applied and Environmental Microbiology, 65(9): 4099−4107. | |
Chen H, Hao D, Wei Z, et al. Bacterial communities associated with the pine wilt disease insect vector Monochamus alternatus (Coleoptera: Cerambycidae) during the larvae and pupae stages . Insects, 2020, 11 (6): 376.
doi: 10.3390/insects11060376 |
|
Choi M Y, Ahn J H, Song J, et al. Analysis of gut bacterial diversity and exploration of cellulose-degrading bacteria in xylophagous insects. Korean Journal of Microbiology, 2015, 51 (3): 209- 220.
doi: 10.7845/kjm.2015.5018 |
|
Dantur Ka I, Enrique R, Welin B, et al. 2015. Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express, 5(1): 1−11. | |
Dar M A, Xie R R, Pandit R S, et al. 2022. Exploring the region-wise diversity and functions of symbiotic bacteria in the gut-system of wood-feeding termite, Coptotermes formosanus, towards the degradation of cellulose, hemicellulose and organic dyes. Insect Science, 29(5): 1414−1432. | |
Delalibera J I, Handelsman J, Raffa K F. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae) . Environmental Entomology, 2005, 34 (3): 541- 547.
doi: 10.1603/0046-225X-34.3.541 |
|
Douglas A E 2009. The microbial dimension in insect nutritional ecology. Functional Ecology, 23(1): 38−47. | |
Fabryova A, Kostovcik M, Diez-Mendez A, et al. On the bright side of a forest pest-the metabolic potential of bark beetles' bacterial associates. Science of the Total Environment, 2018, 619, 9- 17. | |
Fathollahi Z, Habibpour B, Imani S, et al. 2021. Identification of cellulolytic bacteria from guts of Microcerotermes diversus Silvestri (Isoptera: Termitidae) in southern iran. Current Microbiology , 78 (4): 1305 − 1316. | |
Frankenfeld C L. Cardiometabolic risk and gut microbial phytoestrogen metabolite phenotypes. Molecular Nutrition and Food Research, 2016, 61 (1): 383- 393. | |
Gaag D J, Loomans A J M. Host plants of Anoplophora glabripennis, a review . Bulletin OEPP/EPPO Bulletin, 2014, 44 (3): 518- 528.
doi: 10.1111/epp.12151 |
|
Geib S M, Jimenez-gasco M D M, Carlson J E, et al. Effect of host tree species on cellulase activity and bacterial community composition in the gut of larval Asian longhorned beetle. Environmental Entomology, 2009a, 38 (3): 686- 699.
doi: 10.1603/022.038.0320 |
|
Geib S M, Jimenez-gasco M D M, Carlson J E, et al. Microbial community profiling to investigate transmission of bacteria between life stages of the wood-boring beetle, Anoplophora glabripennis . Microbial Ecology, 2009b, 58(1), 199- 211.
doi: 10.1007/s00248-009-9501-4 |
|
Hammer T J, Bower M D. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia, 2015, 179(1), 1- 14.
doi: 10.1007/s00442-015-3327-1 |
|
Hatefi A, Makhdoumi A, Asoodeh A, et al. Characterization of a bi-functional cellulase produced by a gut bacterial resident of Rosaceae branch borer beetle, Osphranteria coerulescens (Coleoptera: Cerambycidae) . International Journal of Biological Macromolecules, 2017, 103, 158- 164.
doi: 10.1016/j.ijbiomac.2017.05.042 |
|
Huang S W, Sheng P, Zhang H Y. 2012. Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). IJMS, 13(3): 2563−2577. | |
Kim J M, Choi M Y, Kim J W, et al. Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera). Journal of Microbiology, 2017, 55 (1): 21- 30.
doi: 10.1007/s12275-017-6561-x |
|
Koroiva R, Souza C W O, Toyama D, et al. 2013. Lignocellulolytic enzymes and bacteria associated with the digestive tracts of Stenochironomus (Diptera: Chironomidae) larvae. Genetics and molecular research: GMR, 12(3): 3421–3434. | |
Lewin G R, Johnson A L, Soto R D, et al. Cellulose-enriched microbial communities from leaf-cutter ant (Atta colombica) refuse dumps vary in taxonomic composition and degradation ability. PLoS One, 2016, 11 (3): e0151840.
doi: 10.1371/journal.pone.0151840 |
|
Li S Y, Li X P, Shpigelman A, et al. Direct and indirect measurements of enhanced phenolic bioavailability from litchi pericarp procyanidins by Lactobacillus casei-01. Food and Function, 2017, 8 (8): 2760- 2770.
doi: 10.1039/C7FO00749C |
|
Linnakoski R, Kasanen R, Lasarov I, et al. Cadophora margaritata sp . nov. and other fungi associated with the longhorn beetles Anoplophora glabripennis and Saperda carcharias in Finland. Antonie Van Leeuwenhoek, 2018, 111(11), 2195- 2211. | |
Ludwig S W, Lazarus L, Mccullough D G, et al. Methods to evaluate host tree suitability to the Asian longhorned beetle, Anoplophora glabripennis . Journal of Environmental Horticulture, 2002, 20 (3): 175- 180.
doi: 10.24266/0738-2898-20.3.175 |
|
Luo C, Li Y, Chen Y, et al. 2019. Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle Cyrtotrachelus buqueti. Biotechnology for Biofuels, 12(1): 1–16. | |
Manfredi A P, Perotti N I, Martínez M A. 2015. Cellulose degrading bacteria isolated from industrial samples and the gut of native insects from Northwest of Argentina. Journal of Basic Microbiology, 55(12): 1384−1393. | |
Mason C J, Campbell A M, Scully E D, et al. Bacterial and fungal midgut community dynamics and transfer between mother and brood in the Asian longhorned beetle (Anoplophora glabripennis), an invasive xylophage . Microbial Ecology, 2019, 77(1), 230- 242.
doi: 10.1007/s00248-018-1205-1 |
|
Mason C J, Long D C, Mccarthy E M, et al. Within gut physicochemical variation does not correspond to distinct resident fungal and bacterial communities in the tree-killing xylophage, Anoplophora glabripennis . Journal of Insect Physiology, 2017, 102, 27- 35.
doi: 10.1016/j.jinsphys.2017.08.003 |
|
Mason C J, Lowe-Power T M, Rubert-Nason K F, et al. Interactions between bacteria and aspen defense chemicals at the phyllosphere – herbivore interface. Journal of Chemical Ecology, 2016, 42 (3): 193- 201.
doi: 10.1007/s10886-016-0677-z |
|
Mckenna D D, Scully E D, Pauchet Y, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface . Genome Biology, 2016, 17 (1): 1–18.
doi: 10.1186/s13059-016-1088-8 |
|
Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, et al. 2009. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microbial Ecology, 58(4): 879–891. | |
Morewood W D, Neiner P R, Mcneil J R, et al. Oviposition preference and larval performance of Anoplophora glabripennis (Coleoptera: Cerambycidae) in four Eastern North American hardwood tree species . Environmental Entomology, 2003, 32 (5): 1028- 1034.
doi: 10.1603/0046-225X-32.5.1028 |
|
MsangoSoko K, Bhattacharya R, Ramakrishnan B, et al. 2021. Cellulolytic activity of gut bacteria isolated from the eri silkworm larvae, Samia ricini, (Lepidoptera: Saturniidae). International Journal of Tropical Insect Science, 41(4): 2785–2794. | |
Noda S, Aihara C, Yuki M, et al. 2018. Draft genome sequence of Lactococcus sp. strain NtB2 (JCM 32569), isolated from the gut of the higher termite Nasutitermes takasagoensis. Genome Announcements, 6(24): e00445-18. | |
Peral-Aranega E, Saati-Santamaria Z, Kolarik M, et al. 2020. Bacteria belonging to Pseudomonas typographi sp. nov. from the bark beetle Ips typographus have genomic potential to aid in the host ecology. Insects, 11(9): 593. | |
Pourramezan Z, Ghezelbash G R, Romani B, et al. 2012. Screening and identification of newly isolated cellulose-degrading bacteria from the gut of xylophagous termite Microcerotermes diversus (Silvestri). Mikrobiologiia, 81(6): 736–742. | |
Sami A J, Yasmeen N, Shakoori A R. 2008. Cellulolytic activity of microbial flora of agricultural insects. Pakistan journal of zoology, 40(1): 60–63. | |
Santamaria R I, Martinez-Carrasco A, de la Nieta R S, et al. 2020. Characterization of actinomycetes strains isolated from the intestinal tract and feces of the larvae of the longhorn beetle Cerambyx welensii. Microorganisms, 8(12): 2013. | |
Schloss P D, Delalibera I, Handelsman J, et al. Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae) . Environmental Entomology, 2006, 35 (3): 625- 629.
doi: 10.1603/0046-225X-35.3.625 |
|
Scully E D, Geib S M, Mason C J, et al. Host-plant induced changes in microbial community structure and midgut gene expression in an invasive polyphage (Anoplophora glabripennis) . Scientific Reports, 2018, 8(1), 1–16.
doi: 10.1038/s41598-018-27476-0 |
|
Scully E D, Hoover K, Carlson J E, et al. Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle . BMC Genomics, 2013, 14(1), 1–26.
doi: 10.1186/1471-2164-14-850 |
|
Scully E D, Geib S M, Carlson J E, et al. Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles . BMC Genomics, 2014, 15(1), 1–21.
doi: 10.1186/1471-2164-15-1096 |
|
Sheng P, Huang S W, Wang Q, et al. 2012. Isolation, screening, and optimization of the fermentation conditions of highly cellulolytic bacteria from the hindgut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Applied Biochemistry and Biotechnology, 167(2): 270–284. | |
Spiteller D, Dettner K, Bolan W. Gut bacteria may be involved in interactions between plants, herbivores and their predators: microbial biosynthesis of N-acylglutamine surfactants as elicitors of plant volatiles. Biological Chemistry, 2000, 381 (8): 755- 762. | |
Sun J Z, Michael E, Scharf. Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Science, 2010, 17 (3): 163- 165. | |
Vilanova C, Marco G, Dominguez-Escriba L, et al. Bacteria from acidic to strongly alkaline insect midguts: Potential sources of extreme cellulolytic enzymes. Biomass & Bioenergy, 2012, 45, 288- 294. | |
Wang L X, Li C C, Wang X, et al. 2022. Gut lignocellulose activity and microbiota in Asian longhorned beetle and their predicted contribution to larval nutrition. Frontiers in Microbiology, 13: 899865. | |
Watanabe H, Tokuda G. Cellulolytic systems in insects. Annual Review of Entomology, 2010, 55 (1): 609- 632.
doi: 10.1146/annurev-ento-112408-085319 |
|
Weisburg W G, Barns S M, Pelletier D A, et al. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 1991, 173 (2): 697- 703.
doi: 10.1128/jb.173.2.697-703.1991 |
|
Wenzel M, Schönig I, Berchtold M, et al. 2002. Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. Journal of Applied Microbiology, 92(1): 32−40. | |
Xia X, Gurr G M, Vasseur L, et al. Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Frontiers in Microbiology, 2017, 8, 663.
doi: 10.3389/fmicb.2017.00663 |
|
Xu L, Lou Q, Cheng C, et al. Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production . Microbial Ecology, 2015, 70 (4): 1012- 1023.
doi: 10.1007/s00248-015-0625-4 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||