林业科学 ›› 2026, Vol. 62 ›› Issue (1): 133-143.doi: 10.11707/j.1001-7488.LYKX20240521
周宏威1(
),李永正1,郭文辉2,*(
),陈怡帆2,胡浩昌1,张思岩1,崔迪3,陈雨茉4
收稿日期:2024-09-04
修回日期:2025-07-04
出版日期:2026-01-25
发布日期:2026-01-14
通讯作者:
郭文辉
E-mail:easyid@163.com;guowh1666@163.com
基金资助:
Hongwei Zhou1(
),Yongzheng Li1,Wenhui Guo2,*(
),Yifan Chen2,Haochang Hu1,Siyan Zhang1,Di Cui3,Yumo Chen4
Received:2024-09-04
Revised:2025-07-04
Online:2026-01-25
Published:2026-01-14
Contact:
Wenhui Guo
E-mail:easyid@163.com;guowh1666@163.com
摘要:
目的: 为探究影响松材线虫病传播扩散的主要影响因素,结合自然气候、人类活动以及地理空间特征多源数据,围绕松材线虫病“传入-定殖-扩散”的生态入侵过程,构建适用于更小空间尺度数据的传播预测模型,实现对松材线虫病高风险发生地区的精准预测和早期预警。方法: 基于国家林业和草原局公布的江苏省松材线虫病小班本底发生数据,结合松材线虫病的生态特性和地理空间分布规律,选取包含自然气候、人类活动因素以及空间特征等25项影响因子数据,采用主成分分析方法进行数据预处理,通过Spearman相关性分析方法和Apriori数据挖掘算法,探究各影响因子与松材线虫病发生之间的相互作用关系。结合贝叶斯估计方法对影响因子数据进行特征增强,建立灰狼优化算法-元胞自动机模型模拟松材线虫病的传播扩散过程,同时与其他5种主流机器学习模型预测结果进行横向对比验证,通过计算其精确率、召回率和AUC等评价指标对模型性能进行验证。结果: 构建的灰狼优化算法-元胞自动机模型在松材线虫病新发小班预测中表现出优异的性能,模型召回率达到78.5%,显著优于其他5种主流机器学习模型;同时,其AUC值达到89.0%,表明模型在识别新发疫情点位的同时,兼顾较高的整体预测准确性与判别能力。本研究进一步证实地理空间特征在松材线虫病传播预测中的重要性,并验证元胞自动机模型在处理复杂时空数据和更精细尺度空间数据预测方面的高度适用性。结论: 木材运输是驱动松材线虫病传播扩散的关键因素,而温度与降水的差异也在显著程度上影响其发生风险。作为一种融合空间异质性与时间动态特征的建模方法,元胞自动机模型在处理复杂生态数据与入侵物种风险评估方面展现出较高的适用性与灵活性,可为松材线虫病的精准防控与高效管理提供有力的技术支撑。
中图分类号:
周宏威,李永正,郭文辉,陈怡帆,胡浩昌,张思岩,崔迪,陈雨茉. 基于元胞自动机模型的松材线虫病小班尺度预测[J]. 林业科学, 2026, 62(1): 133-143.
Hongwei Zhou,Yongzheng Li,Wenhui Guo,Yifan Chen,Haochang Hu,Siyan Zhang,Di Cui,Yumo Chen. Prediction of Subcompartment-Scale Spread of Pine Wilt Disease Based on Cellular Automata Model[J]. Scientia Silvae Sinicae, 2026, 62(1): 133-143.
表1
影响因子数据库"
| 影响因子类型 Environmental factor type | 影响因子 Environmental factor | 缩写 Abbreviation | 数据来源 Data source |
| 生物气候因子 Bioclimatic factor | 19项生物气候因子 19 Bioclimatic factors | Bio1-Bio19 | |
| 地理环境因子 Geography factor | 海拔 Elevation | Ele | |
| 人为影响因子 Human influence | 人口 Population | Pop | |
| 地区生产总值 Gross domestic product | GDP | ||
| 道路密度 Road density | R.dens | ||
| 木材运输量 Pine wood transportation | PWT | 国家林业和草原局 生物灾害防控中心 Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration | |
| 疫区木材运输量 Infected pine wood transportation | IPWT |
表2
支持度前十名的频繁项集①"
| 项集长度 Length | 频繁项集 Frequent items | 支持度 Support | 频率 Occurrences |
| 1 | 疫区木材运输量 Infected pine wood transportation: 中 Middle(3.11~8.52) | 0.546 | 1 601 |
| 1 | 木材运输量 Pine wood transportation: 较高 Relatively high(349.15~2 951.08) | 0.454 | 1 329 |
| 1 | 木材运输量 Pine wood transportation: 中 Middle(200.00~349.15) | 0.423 | 1 238 |
| 1 | 疫区木材运输量 Infected pine wood transportation: 较高 Relatively high(8.52~167.83) | 0.311 | 913 |
| 1 | 木材运输量 Pine wood transportation: 高 High(6 386.88 ~ 8 478.69) | 0.208 | 610 |
| 2 | 降水类影响因子 Synthetic precipitation class: 低 Low(?1.94~?1.62), 疫区木材运输量 Infected pine wood transportation: 中 Middle(3.11~8.52) | 0.394 | 1 155 |
| 2 | 疫区木材运输量 Infected pine wood transportation: 较高 Relatively high(8.52~167.83), 木材运输量 Pine wood transportation: 高 High(6 386.88~8 478.69) | 0.312 | 913 |
| 2 | 降水类影响因子 Synthetic precipitation class: 低 Low(?1.94~?1.62), 木材运输量 Pine wood transportation: 中 Middle(200.00~349.15) | 0.188 | 551 |
| 2 | 温度类影响因子 Synthetic temperature class: 较低 Relatively low(?1.75~?1.43), 疫区木材运输量Infected pine wood transportation: 中 Middle(3.11~8.52) | 0.168 | 492 |
| 2 | 木材运输量 Pine wood transportation: 中 Middle(200.00~349.15), 温度类影响因子 Synthetic temperature class: 较低 Relatively low(?1.75~?1.43) | 0.156 | 455 |
表3
支持度前五名的自然因子频繁项集①"
| 项集长度 Length | 频繁项集 Frequent items | 支持度 Support | 频率 Frequency |
| 1 | Bio5: 较高Relatively high(54.32~54.42) | 0.337 | 423 |
| 1 | Bio6: 高High(0.20~1.02) | 0.327 | 410 |
| 1 | Bio11: 中Middle(14.65~14.82) | 0.316 | 396 |
| 1 | Bio11: 较高Relatively high(14.99~20.75) | 0.274 | 343 |
| 1 | Bio6: 中 (0.16~0.20) | 0.271 | 340 |
| 2 | Bio16: 较高Relatively high(809.40~834.40), Bio18: 较高Relatively high(809.40~834.40) | 0.229 | 287 |
| 2 | Bio16: 高High(801.20~809.40),Bio18: 高High(801.20~809.40) | 0.226 | 283 |
| 2 | Bio1: 较高Relatively high(26.39~49.54), Bio10: 较高Relatively high(37.53~119.48) | 0.226 | 283 |
| 2 | Bio1: 较高Relatively high(26.39~49.54),Bio11: 较高Relatively high(14.99~20.75) | 0.217 | 272 |
| 2 | Bio5: 较高Relatively high(54.32~54.42),Bio8: 较高Relatively high(37.84~38.24) | 0.213 | 267 |
| 陈崇成, 李建微, 唐丽玉, 等. 林火蔓延的计算机模拟与可视化研究进展. 林业科学, 2005, 41 (5): 155- 162. | |
| Chen C C, Li J W, Tang L Y, et al. Research advance in simulation and visualization of forest fire spreading via computer. Scientia Silvae Sinicae, 2005, 41 (5): 155- 162. | |
| 程 功, 吕 全, 冯益明, 等. 气候变化背景下松材线虫在中国分布的时空变化预测. 林业科学, 2015, 51 (6): 119- 126. | |
| Cheng G, Lv Q, Feng Y M, et al. Temporal and spatial dynamic pattern of pine wilt disease distribution in China predicted under climate change scenario. Scientia Silvae Sinicae, 2015, 51 (6): 119- 126. | |
| 丁晓磊, 汪青桐, 林司曦, 等. 广东省与江苏省松材线虫种群遗传结构差异分析. 林业科学, 2022, 58 (8): 1- 9. | |
| Ding Y L, Wang Q T, Lin S X, et al. Analysis of genetic variations of Bursaphelenchus xylophilus populations between Guangdong and Jiangsu provinces with SNP marker. Scientia Silvae Sinicae, 2022, 58 (8): 1- 9. | |
| 郭彦龙, 赵泽芳, 乔慧捷, 等. 物种分布模型面临的挑战与发展趋势. 地球科学进展, 2020, 35 (12): 1292- 1305. | |
| Guo Y L, Zhao Z F, Qiao H J, et al. Challenges and development trend of species distribution model. Advances in Earth Science, 2020, 35 (12): 1292- 1305. | |
| 韩阳阳, 王 焱, 项 杨, 等. 基于Maxent生态位模型的松材线虫在中国的适生区预测分析. 南京林业大学学报(自然科学版), 2015, 39 (01): 6- 10. | |
| Han Y Y, Wang Y, Xiang Y, et al. Prediction of potential distribution of Bursaphelenchus xylophilus in China based on Maxent ecological niche model. Journal of Nanjing Forestry University (Natural Science Edition), 2015, 39 (01): 6- 10. | |
| 洪承昊, 陈京元, 赵 勇, 等. 三峡库区松材线虫病扩张速度对人为活动的响应. 生态学报, 2017, 37 (20): 6800- 6808. | |
| Hong C H, Chen J Y, Zhao Y, et al. A correlation of pine wood nematode dispersal rate with human activities-a case study in the Three Gorges Reservoir Area. Acta Ecologica Sinica, 2017, 37 (20): 6800- 6808. | |
| 巨云为, 李明阳, 吴文浩. 江苏省松材线虫发生的预测方法. 林业科学, 2010, 46 (12): 91- 96. | |
| Ju Y W, Li M Y, Wu W H. Predictive methods of pine wilt disease in Jiangsu Province. Scientia Silvae Sinicae, 2010, 46 (12): 91- 96. | |
| 焦强英, 韩宗甫, 王炜烨, 等. 基于多源数据和机器学习方法的大兴安岭地区雷击火驱动因子及火险预测模型. 林业科学, 2023, 59 (6): 74- 87. | |
| Jiao Q Y, Han Z P, Wang W Y, et al. Driving factors and forecasting model of lightning-caused forest fires in daxing’ anling mountains based on multi-sources data and machine learning method. Scientia Silvae Sinicae, 2023, 59 (6): 74- 87. | |
| 刘婷婷, 杨晋帆, 周汝良, 等. 基于地理栅格变量与机器学习的松材线虫病扩散风险分析. 浙江农林大学学报, 2023, 40 (3): 617- 626. | |
| Liu T T, Yang J F, Zhou R L, et al. Prediction of spread risk of pine wilt disease based on geographic raster variables and machine learning models. Journal of Zhejiang A& F University, 2023, 40 (3): 617- 626. | |
| 刘晓梅, 蒲永兰, 李宏群, 等. 基于MaxEnt模型的重庆松材线虫病潜在生境分析. 三峡生态环境监测, 2017, 2 (3): 75- 80. | |
| Liu X M, Pu Y L, Li H Q, et al. Potential habitat analysis of pine wilt disease in Chongqing based on the MaxEnt model. Ecology and Environmental Monitoring of Three Gorges, 2017, 2 (3): 75- 80. | |
| 田 静, 邢艳秋, 姚松涛, 等. 基于元胞自动机和BP神经网络算法的Landsat-TM遥感影像森林类型分类比较. 林业科学, 2017, 53 (2): 26- 34. | |
| Tian J, Xing Y Q, Yao S T, et al. Comparison of Landsat-TM image forest type classification based on cellular automata and BP neural network algorithm. Scientia Silvae Sinicae, 2017, 53 (2): 26- 34. | |
| 田相林, 廖梓延, 孙帅超, 等. 多源数据对林分动态预测的影响及不确定性分析. 林业科学, 2021, 57 (3): 51- 66. | |
| Tian X L, Liao Z Y, Sun S C, et al. Impacts of multiple source data on forest forecasting and uncertainty propagatio. Scientia Silvae Sinicae, 2021, 57 (3): 51- 66. | |
| 王冬至, 张冬燕, 李永宁, 等. 基于贝叶斯法的针阔混交林树高与胸径混合效应模型. 林业科学, 2019, 55 (11): 85- 94. | |
| Wang D Z, Zhang D Y, Li Y N, et al. Height-diameter relationship for conifer mixed forest based on bayesian nonlinear mixed-effects model. Scientia Silvae Sinicae, 2019, 55 (11): 85- 94. | |
| 王曦茁, 曹业凡, 汪来发, 等. 松材线虫病发生及防控现状. 环境昆虫学报, 2018, 40 (2): 256- 267. | |
| Wang Z X, Cao Y F, Wang L F, et al. Current status of pine wilt disease and its control status. Journal of Environmental Entomology, 2018, 40 (2): 256- 267. | |
| 项移娟, 管剑锋, 李 健, 等. 浙江省松材线虫病发生程度预测预报模型. 浙江农林大学学报, 2011, 28 (5): 775- 778. | |
| Xiang Y J, Guan J F, Li J, et al. A pine wilt disease forecasting model for Zhejiang Province. Journal of Zhejiang A & F University, 2011, 28 (5): 775- 778. | |
| 许格希, 余荣兵, 杨昌旭, 等. 基于GIS空间技术和MaxEnt模型预测川西松材线虫病入侵风险. 北京林业大学学报, 2023, 45 (09): 104- 115. | |
| Xu G X, Yu R B, Yang C X, et al. Prediction of invasion risk of pine wilt disease based on GIS spatial technology and MaxEnt model in western Sichuan province of southwestern China. Journal of Beijing Forestry University, 2023, 45 (09): 104- 115. | |
| 应晨希, 吴小芹, 温彤玥, 等. 不同致病力松材线虫和拟松材线虫种群繁殖对温度的响应. 环境昆虫学报, 2023, 45 (2): 433- 441. | |
| Ying C X, Wu X Q, Wen T Y, et al. Population reproduction of Bursaphelenchus xylophilus and Bursaphelenchus mucronatus with different virulence response to temperature. Journal of Environmental Entomology, 2023, 45 (2): 433- 441. | |
| 叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析. 林业科学, 2019, 55 (9): 1- 10. | |
| Ye J R. The current situation, control techniques, and countermeasures of pine wilt disease in China. Scientia Silvae Sinicae, 2019, 55 (9): 1- 10. | |
| 张晓芳, 郭旭展, 洪 亮, 等. 冬奥核心区华北落叶松和白桦单木冠幅预测模型——组级贝叶斯模型、加性模型和混合效应模型比较. 林业科学, 2022, 58 (10): 89- 100. | |
| Zhang X F, Guo X Z, Hong L, et al. Comparison of single tree crown prediction models of Larix principis-rupprechtii and Betula platyphylla in the core area of the Winter Olympics in China. Scientia Silvae Sinicae, 2022, 58 (10): 89- 100. | |
| 张志诚, 刘 鹏, 孙江华, 等. 松树萎蔫病在安徽的侵染及其发生的气候分布研究. 宁夏大学学报(自然科学版), 2006, 27 (1): 89- 92. | |
| Zhang Z C, Liu P, Shun J H, et al. GIS method on the spatial-climate distributed characteristic of pine wilt disease in Anhui Province. Journal of Ningxia University(Natural Science Edition), 2006, 27 (1): 89- 92. | |
| 郑雅楠, 刘佩旋, 时 勇, 等. 辽宁松材线虫病与中国其他疫区的差异性分析. 北京林业大学学报, 2021, 43 (5): 155- 160. | |
| Zheng Y N, Liu P X, Shi Y, et al. Difference analysis on pine wilt disease between Liaoning province of northeastern China and other epidemic areas in China. Journal of Beijing Forestry University, 2021, 43 (5): 155- 160. | |
| 赵 理. 2024. 从典型案件谈松材线虫病疫木管理. 中国森林病虫, 43(3):42−45. | |
| Zhao L. 2024. Discussing the management of pine wood nematode-infected wood through typical case studies. Forest Pest and Disease, 43(3):42−45.[in Chinese] | |
|
Aburas M M, Ho Y M, Ramli M F, et al. The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 380- 389.
doi: 10.1016/j.jag.2016.07.007 |
|
| Barik M, Hafidi I, Rochd Y. 2023. Review of heuristic algorithms for frequent itemsets mining problem. Computing and Informatics, 42(6): 1360–1377-1360–1377. | |
| Choi W I, Song H J, Kim D S, et al. 2017. Dispersal patterns of pine wilt disease in the early stage of its invasion in South Korea. Forests, 8(11): 411. | |
| Gan W, Lin J C W, Fournier-Viger P, et al. A survey of utility-oriented pattern mining. IEEE Transactions on Knowledge and Data Engineering, 2019, 33 (4): 1306- 1327. | |
|
Hirata A, Nakamura K, Nakao K, et al. Potential distribution of pine wilt disease under future climate change scenarios. PLoS One, 2017, 12 (8): e0182837.
doi: 10.1371/journal.pone.0182837 |
|
| Huang J, Zhao X, Mo X, et al. 2024. Host vegetation connectivity is decisive for the natural spread of pine wilt disease. Pest Management Science, 80(10):5141-5156 | |
|
Jin Z, He D, Wei Z. Intelligent fault diagnosis of train axle box bearing based on parameter optimization VMD and improved DBN. Engineering Applications of Artificial Intelligence, 2022, 110, 104713.
doi: 10.1016/j.engappai.2022.104713 |
|
| Jolliffe I T, Cadima J. 2016. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065): 20150202. | |
|
Lee D S, Choi W I, Nam Y, et al. Predicting potential occurrence of pine wilt disease based on environmental factors in South Korea using machine learning algorithms. Ecological informatics, 2021, 64, 101378.
doi: 10.1016/j.ecoinf.2021.101378 |
|
|
Lin J, Li X, Wen Y, et al. Modeling urban land-use changes using a landscape-driven patch-based cellular automaton (LP-CA). Cities, 2023, 132, 103906.
doi: 10.1016/j.cities.2022.103906 |
|
|
Liu C, Newell G, White M. On the selection of thresholds for predicting species occurrence with presence‐only data. Ecology and evolution, 2016, 6 (1): 337- 348.
doi: 10.1002/ece3.1878 |
|
|
Liu D, Zhang X. Occurrence prediction of pine wilt disease based on CA-Markov model. Forests, 2022, 13 (10): 1736.
doi: 10.3390/f13101736 |
|
|
Liu Y, Huang J, Yang T. Natural factors play a dominant role in the short-distance transmission of pine wilt disease. Forests, 2023, 14 (5): 1059.
doi: 10.3390/f14051059 |
|
|
Lu X, Huang J, Li X, et al. The interaction of environmental factors increases the risk of spatiotemporal transmission of pine wilt disease. Ecological Indicators, 2021, 133, 108394.
doi: 10.1016/j.ecolind.2021.108394 |
|
| Lundberg S, Lee S I. 2017. A unified approach to interpreting model predictions. Advances in neural information processing systems, 30. | |
|
Medrek M, Pastuszak Z. Numerical simulation of the novel coronavirus spreading. Expert Systems with applications, 2021, 166, 114109.
doi: 10.1016/j.eswa.2020.114109 |
|
|
Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69, 46- 61.
doi: 10.1016/j.advengsoft.2013.12.007 |
|
|
Mohd Pozi M S, Sulaiman M N, Mustapha N, et al. A new classification model for a class imbalanced data set using genetic programming and support vector machines: case study for wilt disease classification. Remote Sensing Letters, 2015, 6 (7): 568- 577.
doi: 10.1080/2150704X.2015.1062159 |
|
|
Tang X, Yuan Y, Li X, et al. Maximum entropy modeling to predict the impact of climate change on pine wilt disease in China. Frontiers in plant science, 2021, 12, 652500.
doi: 10.3389/fpls.2021.652500 |
|
|
Wang W, Zhu Q, He G, et al. Impacts of climate change on pine wilt disease outbreaks and associated carbon stock losses. Agricultural and Forest Meteorology, 2023, 334, 109426.
doi: 10.1016/j.agrformet.2023.109426 |
|
|
Xiao Y, Guo Q, Xie N, et al. Predicting the global potential distribution of Bursaphelenchus xylophilus using an ecological niche model: expansion trend and the main driving factors. BMC Ecology and Evolution, 2024, 24 (1): 48.
doi: 10.1186/s12862-024-02234-1 |
|
| Yu B, Yin H, Zhu Z. 2017. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv: 1709.04875. | |
| Zhou H, Zhang S, Chen Y, et al. Research on pine wilt disease spread prediction based on an improved LGBM model. Phytopathology®, 2025, 115 (4): 410- 421. | |
| Zhou H W, Xie M, Koski T M, et al. Epidemiological model including spatial connection features improves prediction of the spread of pine wilt disease. Ecological Indicators, 2024, 63, 112103. | |
|
Zhou J, Qiu Y, Zhu S, et al. Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate. Engineering Applications of Artificial Intelligence, 2021, 97, 104015.
doi: 10.1016/j.engappai.2020.104015 |
|
|
Zhang Y, Dian Y, Zhou J, et al. Characterizing spatial patterns of pine wood nematode outbreaks in subtropical zone in China. Remote Sensing, 2021, 13 (22): 4682.
doi: 10.3390/rs13224682 |
| [1] | 陈婷婷,程浩,叶建仁,李映,倪安顺,张娇. 松材线虫移动状况与早期诊断及治疗效果[J]. 林业科学, 2025, 61(7): 241-250. |
| [2] | 李俊楠,付煜,陈润恺,徐云,蔡梦玲,罗圣洁,张继峰,吴松青,张飞萍. 松天牛小首螨的研究Ⅳ:环境及培养条件对寄生率的影响[J]. 林业科学, 2025, 61(5): 161-170. |
| [3] | 徐有城,万兴永,陈兵,赵凤君,刘晓东,叶江霞. 基于精细化风速场模拟的山地林火蔓延[J]. 林业科学, 2025, 61(4): 56-68. |
| [4] | 李志红,张威,赵新康,舒金平,王浩杰. 浙江省不同发生区松材线虫表型变异[J]. 林业科学, 2025, 61(1): 137-149. |
| [5] | 谢婉滢,刘文萍,王晗. 无人机松林图像早期松材线虫病害检测[J]. 林业科学, 2024, 60(9): 124-133. |
| [6] | 李俊楠,陈润恺,付煜,蔡梦玲,黄炳荣,徐云,吴松青,张飞萍. 松天牛小首螨的研究Ⅲ.携播特性[J]. 林业科学, 2022, 58(9): 128-137. |
| [7] | 倪安顺,王永春,杨丹,孙学书,叶建仁. 一种新型复配药剂2%阿维菌素·6%氟吡菌酰胺对松材线虫毒力药效[J]. 林业科学, 2022, 58(8): 18-25. |
| [8] | 李俊楠,陈润恺,付煜,蔡梦玲,黄炳荣,徐云,吴松青,张飞萍. 松天牛小首螨的研究Ⅱ.雌成螨的移动和趋性[J]. 林业科学, 2022, 58(8): 149-156. |
| [9] | 李俊楠,朱禹臻,陈润恺,付煜,蔡梦玲,黄炳荣,徐云,吴松青,张飞萍. 松天牛小首螨的研究Ⅰ.生物学特性[J]. 林业科学, 2022, 58(6): 79-87. |
| [10] | 王旻嘉,叶建仁,涂煜昇,杜方平. 处理松材线虫病疫木的木腐真菌筛选[J]. 林业科学, 2021, 57(6): 93-102. |
| [11] | 叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析[J]. 林业科学, 2019, 55(9): 1-10. |
| [12] | 孙婷玉, 王艳丽, 沈李元, 吴小芹, 朱丽华, 叶建仁. 培养基成分对黑松体胚发育成熟的影响[J]. 林业科学, 2019, 55(4): 178-186. |
| [13] | 姚伍, 郑催云, 陈红梅, 刘侃诚, 韩正敏. 福建三明市应用Smal-007菌剂防治松材线虫病的效果[J]. 林业科学, 2018, 54(1): 168-173. |
| [14] | 林丽, 周蕾, 潘珺, 康李鹏, 叶建仁, 朱丽华. 无菌和带菌松材线虫对赤松的致病性[J]. 林业科学, 2017, 53(5): 82-87. |
| [15] | 田静, 邢艳秋, 姚松涛, 曾旭婧, 焦义涛. 基于元胞自动机和BP神经网络算法的Landsat-TM遥感影像森林类型分类比较[J]. 林业科学, 2017, 53(2): 26-34. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||