欢迎访问林业科学,今天是

林业科学 ›› 2026, Vol. 62 ›› Issue (1): 133-143.doi: 10.11707/j.1001-7488.LYKX20240521

• 研究论文 • 上一篇    下一篇

基于元胞自动机模型的松材线虫病小班尺度预测

周宏威1(),李永正1,郭文辉2,*(),陈怡帆2,胡浩昌1,张思岩1,崔迪3,陈雨茉4   

  1. 1. 东北林业大学计算机与控制工程学院 哈尔滨 150040
    2. 国家林业和草原局生物灾害防控中心 沈阳 110034
    3. 黑龙江省林业技术服务中心 哈尔滨 150000
    4. 东北大学材料科学与工程学院 沈阳 110819
  • 收稿日期:2024-09-04 修回日期:2025-07-04 出版日期:2026-01-25 发布日期:2026-01-14
  • 通讯作者: 郭文辉 E-mail:easyid@163.com;guowh1666@163.com
  • 基金资助:
    国家自然科学基金项目(U24A20432)

Prediction of Subcompartment-Scale Spread of Pine Wilt Disease Based on Cellular Automata Model

Hongwei Zhou1(),Yongzheng Li1,Wenhui Guo2,*(),Yifan Chen2,Haochang Hu1,Siyan Zhang1,Di Cui3,Yumo Chen4   

  1. 1. College of Computer and Control Engineering, Northeast Forestry University Harbin 150040
    2. Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration Shenyang 110034
    3. Heilongjiang Forestry Technology Service Center Harbin 150000
    4. College of Materials Science and Engineering,Northeastern University Shenyang 110819
  • Received:2024-09-04 Revised:2025-07-04 Online:2026-01-25 Published:2026-01-14
  • Contact: Wenhui Guo E-mail:easyid@163.com;guowh1666@163.com

摘要:

目的: 为探究影响松材线虫病传播扩散的主要影响因素,结合自然气候、人类活动以及地理空间特征多源数据,围绕松材线虫病“传入-定殖-扩散”的生态入侵过程,构建适用于更小空间尺度数据的传播预测模型,实现对松材线虫病高风险发生地区的精准预测和早期预警。方法: 基于国家林业和草原局公布的江苏省松材线虫病小班本底发生数据,结合松材线虫病的生态特性和地理空间分布规律,选取包含自然气候、人类活动因素以及空间特征等25项影响因子数据,采用主成分分析方法进行数据预处理,通过Spearman相关性分析方法和Apriori数据挖掘算法,探究各影响因子与松材线虫病发生之间的相互作用关系。结合贝叶斯估计方法对影响因子数据进行特征增强,建立灰狼优化算法-元胞自动机模型模拟松材线虫病的传播扩散过程,同时与其他5种主流机器学习模型预测结果进行横向对比验证,通过计算其精确率、召回率和AUC等评价指标对模型性能进行验证。结果: 构建的灰狼优化算法-元胞自动机模型在松材线虫病新发小班预测中表现出优异的性能,模型召回率达到78.5%,显著优于其他5种主流机器学习模型;同时,其AUC值达到89.0%,表明模型在识别新发疫情点位的同时,兼顾较高的整体预测准确性与判别能力。本研究进一步证实地理空间特征在松材线虫病传播预测中的重要性,并验证元胞自动机模型在处理复杂时空数据和更精细尺度空间数据预测方面的高度适用性。结论: 木材运输是驱动松材线虫病传播扩散的关键因素,而温度与降水的差异也在显著程度上影响其发生风险。作为一种融合空间异质性与时间动态特征的建模方法,元胞自动机模型在处理复杂生态数据与入侵物种风险评估方面展现出较高的适用性与灵活性,可为松材线虫病的精准防控与高效管理提供有力的技术支撑。

关键词: 松材线虫病, 传播预测模型, 大数据, 数据挖掘, 元胞自动机

Abstract:

Objective: In this study, multi-source data comprising natural climate variables, anthropogenic activity indicators, and geospatial features is used to analyze the key factors influencing the spread and expansion of pine wilt disease (PWD). Focusing on the ecological invasion process of PWD of ‘introduction-colonization-expansion’, a predictive model applicable at a fine spatial scale is constructed, aiming to achieve precise identification and early warning of high-risk outbreak areas of pine wilt disease. Method: This study utilized subcompartment-level outbreak records of PWD in Jiangsu Province published by the National Forestry and Grassland Administration of China. Based on the ecological characteristics and spatial distribution patterns of PWD, a total of 25 influencing variables were selected, covering natural climate conditions, human activity, and spatial features. Principal Component Analysis (PCA) was used for dimensionality reduction, and Spearman correlation analysis and the Apriori data mining algorithm were applied to examine the interactions between each influencing factor and the occurrence of PWD. Bayesian estimation was employed to enhance the feature of the variables. A Grey Wolf Optimizer-Cellular Automata (GWO-CA) model was constructed to simulate the spatiotemporal spread of PWD. The model’s predictive performance was further evaluated through horizontal comparison with five mainstream machine learning models, with precision, recall, and AUC as evaluation metrics. Result: The Grey Wolf Optimizer-Cellular Automata model developed in this study exhibited excellent performance in predicting the new occurrence of pine wilt disease in subcompartment. The model achieved a recall rate of 78.5%, and significantly outperformed the other five mainstream machine learning models. Additionally, the model yielded an AUC value of 89.0%, indicating a high level of predictive accuracy and discriminative ability in identifying new outbreak locations. This study also underscored the critical role of geospatial features in forecasting the spread of pine wilt disease, and confirmed the strong suitability of cellular automata for modeling complex spatiotemporal data, especially at fine spatial scales. Conclusion: This study has identified timber transportation as a key driver of the spread of pine wood nematode, and temperature and precipitation differences also exert significant influence on outbreak risk. As a modeling approach that integrates spatial heterogeneity and temporal dynamics, the Cellular Automata model has proven to be highly adaptable and effective for complex ecological data analysis and invasive species risk assessment. It offers robust technical support for the precise prevention and efficient management of pine wilt disease.

Key words: pine wilt disease, spread prediction model, big data, cellular automata, data mining

中图分类号: