|
陈龙现, 刘传泽, 杜光月, 等. 人造板在线同步图像采集系统设计与实现. 制造业自动化, 2019, 41 (1): 68- 71.
doi: 10.3969/j.issn.1009-0134.2019.01.016
|
|
Chen L X, Liu C Z, Du G Y, et al. Design and implementation of synchronous image acquisition system of wood-based panels. Manufacturing Automation, 2019, 41 (1): 68- 71.
doi: 10.3969/j.issn.1009-0134.2019.01.016
|
|
邓斌攸,池志强,潘云峰,等. 家具板件圆形孔位的机器视觉在线检测算法. 木材科学与技术, 2022, 36 (2): 60- 64.
doi: 10.12326/j.2096-9694.2021099
|
|
Deng B Y, Chi Z Q, Pan Y F, et al. Algorithm of machine vision system for detecting holes in furniture panel. Chinese Journal of Wood Science and Technolog, 2022, 36 (2): 60- 64.
doi: 10.12326/j.2096-9694.2021099
|
|
侯晓鹏, 吴智慧, 刘海波, 等. 基于OPC统一架构的木制品加工设备信息互联互通方法. 木材科学与技术, 2022, 36 (6): 95- 102.
doi: 10.12326/j.2096-9694.2022098
|
|
Hou X P, Wu Z H, Liu H B, et al. Information interconnection and intercommunication method for woodworking equipment based on open platform communications unified architecture(OPC UA). Chinese Journal of Wood Science and Technology, 2022, 36 (6): 95- 102.
doi: 10.12326/j.2096-9694.2022098
|
|
贾浩男, 徐华东, 王立海, 等. 基于改进YOLOv5木板材表面缺陷的定量识别. 北京林业大学学报, 2023, 45 (4): 147- 155.
doi: 10.12171/j.1000-1522.20220419
|
|
Jia H N, Xu H D, Wang L H, et al. Quantitative identification of surface defects in wood paneling based on improved YOLOv5. Journal of Beijing Forestry University, 2023, 45 (4): 147- 155.
doi: 10.12171/j.1000-1522.20220419
|
|
彭晓瑞, 吕 斌, 李伟光, 等. 我国板式家具先进制造技术研发与应用进展. 木材科学与技术, 2023, 37 (2): 1- 7, 15.
doi: 10.12326/j.2096-9694.2022085
|
|
Peng X R, Lyu B, Li W G, et al. Development and application progress of advanced manufacturing technology for China’s panel furniture. Chinese Journal of Wood Science and Technology, 2023, 37 (2): 1- 7, 15.
doi: 10.12326/j.2096-9694.2022085
|
|
田智康, 葛浙东, 郑焕祺, 等. 2024. 基于深度学习的75种阔叶材微观辨识方法. 林业科学, 60(10): 94−103.
|
|
Tian Z K, Ge Z D, Zheng H Q, et al. 2024. Microscopic identification methods for 75 types of hardwood based on deep neural network. Scientia Silvae Sinicae, 60(10): 94−103. [in Chinese]
|
|
王 勇, 张 伟. 锯材表面缺陷识别方法对比分析研究. 世界林业研究, 2022, 35 (4): 47- 52.
|
|
Wang Y, Zhang W. Comparative analysis of surface defect recognition methods for sawntimber. World Forestry Research, 2022, 35 (4): 47- 52.
|
|
王 晰, 简振雄, 任明俊. 基于深度学习的逆向反射模型. 光学学报, 2023, 43 (21)
doi: 10.3788/AOS230615
|
|
Wang X, Jian Z X, Ren M J. Inverse reflectance model based on deep learning. Acta Optica Sinica, 2023, 43 (21)
doi: 10.3788/AOS230615
|
|
王晓明, 邓 璐, 史一哲, 等. 基于Harris特征与NDT-ICP算法的钢箱拱预制件尺寸智检方法. 交通运输工程学报, 2024, 24 (1): 158- 170.
|
|
Wang X M, Deng L, Shi Y Z, et al. Intelligent dimensional inspection method for steel box arch prefabricated components based on Harris features and NDT-ICP algorithm. Journal of Traffic and Transportation Engineering, 2024, 24 (1): 158- 170.
|
|
吴雨生, 张 伟, 候晓鹏, 等. 基于机器视觉的杉木规格材节子检测与分等. 林业和草原机械, 2020, 1 (2): 13- 16.
|
|
Wu Y S, Zhang W, Hou X P, et al. Fir structural timber detecting and grading based on machine vision technology. Forestry and Grassland Machinery, 2020, 1 (2): 13- 16.
|
|
杨 凡, 杨博凯, 李荣荣. 基于图像分割和深度学习的人造板表面缺陷检测. 浙江农林大学学报, 2024, 41 (1): 176- 182.
|
|
Yang F, Yang B K, Li R R. Surface defect detection technology of wood-based panel based on image segmentation and deep learning. Journal of Zhejiang A & F University, 2024, 41 (1): 176- 182.
|
|
喻 炜, 周海燕, 刘 英, 等. 人造板无损检测技术研究进展. 世界林业研究, 2023, 36 (3): 58- 62.
|
|
Yu W, Zhou H Y, Liu Y, et al. Research progress in nondestructive testing technology for wood-based panels. World Forestry Research, 2023, 36 (3): 58- 62.
|
|
朱剑刚, 王 旭. 木质家具智能制造赋能技术及发展路径分析. 林业工程学报, 2021, 6 (6): 177- 183.
|
|
Zhu J G, Wang X. Research on enabling technologies and development path of intelligent manufacturing of wooden furniture. Journal of Forestry Engineering, 2021, 6 (6): 177- 183.
|
|
张 赛, 王应彪, 杨 谭, 等. 基于改进LeNet-5模型的木材表面典型缺陷识别方法研究. 木材科学与技术, 2021, 35 (6): 31- 37.
doi: 10.12326/j.2096-9694.2021024
|
|
Zhang S, Wang Y B, Yang T, et al. Detecting method of the wood surface defects based on modified LeNet-5 model. Chinese Journal of Wood Science and Technology, 2021, 35 (6): 31- 37.
doi: 10.12326/j.2096-9694.2021024
|
|
Barmpoutis P, Dimitropoulos K, Barboutis I, et al. Wood species recognition through multidimensional texture analysis. Computers and Electronics in Agriculture, 2018, 144, 241- 248.
doi: 10.1016/j.compag.2017.12.011
|
|
Bengio Y, LeCun Y, Hinton G. Deep learning for AI. Communications of the ACM, 2021, 64 (7): 58- 65.
doi: 10.1145/3448250
|
|
Brunetti M, Burato P, Cremonini C, et al. Visual and machine grading of larch (Larix decidua Mill. ) structural timber from the Italian Alps. Materials and Structures, 2016, 49 (7): 2681- 2688.
doi: 10.1617/s11527-015-0676-5
|
|
Chung S, Abbott L F. Neural population geometry: an approach for understanding biological and artificial neural networks. Current Opinion in Neurobiology, 2021, 70, 137- 144.
doi: 10.1016/j.conb.2021.10.010
|
|
Gazo R, Wells L, Krs V, et al. Validation of automated hardwood lumber grading system. Computers and Electronics in Agriculture, 2018, 155, 496- 500.
doi: 10.1016/j.compag.2018.06.041
|
|
Ishida T, Yamane I, Sakai T, et al. 2020. Do we need zero training loss after achieving zero training error? arXiv preprint arXiv: 2002.08709.
|
|
Ji M, Zhang W, Wang G F, et al. Machine vision for knot detection and location in Chinese fir lumber. Forest Products Journal, 2024, 74 (2): 185- 202.
doi: 10.13073/FPJ-D-23-00050
|
|
Ji M, Zhang W, Han J K, et al. A deep learning-based algorithm for online detection of small target defects in large-size sawn timber. Industrial Crops and Products, 2024, 222, 119671.
doi: 10.1016/j.indcrop.2024.119671
|
|
Kamal K, Qayyum R, Mathavan S, et al. Wood defects classification using laws texture energy measures and supervised learning approach. Advanced Engineering Informatics, 2017, 34, 125- 135.
doi: 10.1016/j.aei.2017.09.007
|
|
Li X Y, Chiong R, Hu Z Y, et al. A graph neural network model with local environment pooling for predicting adsorption energies. Computational and Theoretical Chemistry, 2023, 1226, 114161.
doi: 10.1016/j.comptc.2023.114161
|
|
Lukacevic M, Kandler G, Hu M, et al. A 3D model for knots and related fiber deviations in sawn timber for prediction of mechanical properties of boards. Materials & Design, 2019, 166, 107617.
|
|
Pahlberg T, Hagman O, Thurley M. Recognition of boards using wood fingerprints based on a fusion of feature detection methods. Computers and Electronics in Agriculture, 2015, 111, 164- 173.
doi: 10.1016/j.compag.2014.12.014
|
|
Pang G S, Shen C H, Cao L B, et al. Deep learning for anomaly detection. ACM Computing Surveys, 2022, 54 (2): 1- 38.
|
|
Ramos L T, Casas E, Romero C, et al. A study of YOLO architectures for wildfire and smoke detection in ground and aerial imagery. Results in Engineering, 2025, 26, 104869.
doi: 10.1016/j.rineng.2025.104869
|
|
Tu Y X, Ling Z G, Guo S Y, et al. An accurate and real-time surface defects detection method for sawn lumber. IEEE Transactions on Instrumentation and Measurement, 2020, 70, 2501911.
|
|
Wang B. 2022. A parallel implementation of computing mean average precision. arXiv preprint arXiv, 2206.09504.
|
|
Wang Y, Zhang W, Gao R, et al. Recent advances in the application of deep learning methods to forestry. Wood Science and Technology, 2021, 55 (5): 1171- 1202.
doi: 10.1007/s00226-021-01309-2
|
|
Wright L G, Onodera T, Stein M M, et al. Deep physical neural networks trained with backpropagation. Nature, 2022, 601, 549- 555.
doi: 10.1038/s41586-021-04223-6
|
|
Zhao J B, Meng Z X, Jin Z, et al. Bending properties of bamboo scrimber with holes in different sizes and positions. Construction and Building Materials, 2019, 200, 209- 217.
doi: 10.1016/j.conbuildmat.2018.12.076
|