|
黄丽菁, 吴彩文, 邹春阳, 等. 木质素与酶的作用机制及其在纤维素酶水解中的影响研究进展. 西北林学院学报, 2021, 36 (2): 142- 148.
doi: 10.3969/j.issn.1001-7461.2021.02.21
|
|
Huang L J, Wu C W, Zou C Y, et al. The action mechanism of lignin-enzyme and research progress of its influence on enzymatic hydrolysis. Journal of Northwest Forestry University, 2021, 36 (2): 142- 148.
doi: 10.3969/j.issn.1001-7461.2021.02.21
|
|
文甲龙. 2014. 生物质木质素结构解析及其预处理解离机制研究. 北京: 北京林业大学.
|
|
Wen J L. 2014. Structural elucidation of lignin from biomass and its dissociative mechanism during pretreatment process. Beijing: Beijing Forestry University. [in Chinese]
|
|
Berlin A, Balakshin M, Gilkes N, et al. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. Journal of Biotechnology, 2006, 125 (2): 198- 209.
doi: 10.1016/j.jbiotec.2006.02.021
|
|
Bjökman A. Studies on finely divided wood (I) Extraction of lignin with neutral solvents. Svensk Papperstidn, 1956, 59, 477- 485.
|
|
Bjökman A. Lignin and lignin-carbohydrate complexes. Industrial & Engineering Chemistry, 1957, 49 (9): 1395- 1398.
|
|
Borchardt L G, Piper C V. A gas chromatographic method for carbohydrates as alditol-acetates. Tappi, 1970, 53, 257- 260.
|
|
Dence C W, Lin S Y. 1992. Introduction in methods in lignin chemistry. Heidelberg: Springer Verlag Press.
|
|
Feiler A A, Sahlholm A, Sandberg T, et al. Adsorption and viscoelastic properties of fractionated mucin (BSM) and bovine serum albumin (BSA) studied with quartz crystal microbalance (QCM-D). Journal of Colloid and Interface Science, 2007, 315 (2): 475- 481.
doi: 10.1016/j.jcis.2007.07.029
|
|
Guo F F, Shi W J, Sun W, et al. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnology for Biofuels, 2014, 7 (1): 38.
doi: 10.1186/1754-6834-7-38
|
|
Hu G, Heitmann J A Jr, Rojas O J. In situ monitoring of cellulase activity by microgravimetry with a quartz crystal microbalance. The Journal of Physical Chemistry B, 2009, 113 (44): 14761- 14768.
doi: 10.1021/jp907155v
|
|
Huang L J, Li P H, Jiang K J, et al. Investigation of the interaction mechanism between lignin structural units and enzyme. Journal of Renewable Materials, 2023, 11 (4): 1613- 1626.
doi: 10.32604/jrm.2022.023605
|
|
Kim J E, Lee J W. Enzyme adsorption properties on dilute acid pretreated biomass by low vacuum-scanning electron microscopy and structural analysis of lignin. Bioresource Technology, 2018, 262, 107- 113.
doi: 10.1016/j.biortech.2018.04.068
|
|
Koupaie E H, Dahadha S, Bazyar Lakeh A A, et al. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-a review. Journal of Environmental Management, 2019, 233, 774- 784.
doi: 10.1016/j.jenvman.2018.09.106
|
|
Li M F, Yi L, Bin L, et al. Comparison of nonproductive adsorption of cellulase onto lignin isolated from pretreated lignocellulose. Cellulose, 2020, 27 (14): 7911- 7927.
doi: 10.1007/s10570-020-03357-6
|
|
Li M H, Yuan Y F, Zhu Y S, et al. Comparison of sulfomethylated lignin from poplar and masson pine on cellulase adsorption and the enzymatic hydrolysis of wheat straw. Bioresource Technology, 2022, 343, 126142.
doi: 10.1016/j.biortech.2021.126142
|
|
Li M, Pu Y Q, Ragauskas A J. Current understanding of the correlation of lignin structure with biomass recalcitrance. Frontiers in Chemistry, 2016, 4, 45.
|
|
Li M, Si S L, Hao B, et al. Mild alkali -pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Bioresource technology, 2014, 169, 447- 454.
doi: 10.1016/j.biortech.2014.07.017
|
|
Li X, Zheng Y. Lignin-enzyme interaction: mechanism, mitigation approach, modeling, and research prospects. Biotechnology Advances, 2017, 35 (4): 466- 489.
doi: 10.1016/j.biotechadv.2017.03.010
|
|
Liu H, Sun J L, Leu S Y, et al. 2016. Toward a fundamental understanding of cellulase-lignin interactions in the whole slurry enzymatic saccharification process. Biofuels, Bioproducts and Biorefining, 10(5): 648-663.
|
|
Nakagame S, Chandra R P, Saddler J N. The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnology and Bioengineering, 2010, 105 (5): 871- 879.
doi: 10.1002/bit.22626
|
|
Palonen H, Tjerneld F, Zacchi G, et al. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. Journal of Biotechnology, 2004, 107 (1): 65- 72.
doi: 10.1016/j.jbiotec.2003.09.011
|
|
Pareek N, Gillgren T, Jönsson L J. Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresource Technology, 2013, 148, 70- 77.
doi: 10.1016/j.biortech.2013.08.121
|
|
Samuel R, Foston M, Jiang N, et al. Structural changes in switchgrass lignin and hemicelluloses during pretreatments by NMR analysis. Polymer Degradation and Stability, 2011, 96 (11): 2002- 2009.
doi: 10.1016/j.polymdegradstab.2011.08.015
|
|
Song J L, Yang F, Zhang Y, et al. Interactions between fungal cellulases and films of nanofibrillar cellulose determined by a quartz crystal microbalance with dissipation monitoring (QCM-D). Cellulose, 2017, 24 (5): 1947- 1956.
doi: 10.1007/s10570-017-1234-9
|
|
Tan L P, Sun W, Li X Z, et al. Bisulfite pretreatment changes the structure and properties of oil palm empty fruit bunch to improve enzymatic hydrolysis and bioethanol production. Biotechnology Journal, 2015, 10 (6): 915- 925.
doi: 10.1002/biot.201400733
|
|
Turon X, Rojas O J, Deinhammer R S. Enzymatic kinetics of cellulose hydrolysis: a QCM-D study. Langmuir: the ACS Journal of Surfaces and Colloids, 2008, 24 (8): 3880- 3887.
doi: 10.1021/la7032753
|
|
Wen J L, Sun S L, Xue B L, et al. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials, 2013, 6 (1): 359- 391.
doi: 10.3390/ma6010359
|
|
Xu C, Zhang J, Zhang Y, et al. Lignin prepared from different alkaline pretreated sugarcane bagasse and its effect on enzymatic hydrolysis. International Journal of Biological Macromolecules, 2019, 141, 484- 492.
doi: 10.1016/j.ijbiomac.2019.08.263
|
|
Yu Z Y, Gwak K S, Treasure T, et al. Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass. ChemSusChem, 2014, 7 (7): 1942- 1950.
doi: 10.1002/cssc.201400042
|
|
Zhang L M, Gellerstedt G. Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magnetic Resonance in Chemistry: MRC, 2007, 45 (1): 37- 45.
doi: 10.1002/mrc.1914
|
|
Zou C Y, Li J Q, Wu W J. 2022. Study on differences in the enzyme hydrolysis induced from lignins from diverse types of lignocellulosic biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(4): 9293−9309.
|