林业科学 ›› 2025, Vol. 61 ›› Issue (3): 16-26.doi: 10.11707/j.1001-7488.LYKX20240213
格根塔娜1,月亮高可2,3,*(),李晓松2,姬翠翠3,王建和1,沈通2,王天璨2,4
收稿日期:
2024-04-19
出版日期:
2025-03-25
发布日期:
2025-03-27
通讯作者:
月亮高可
E-mail:yuelianggaoke@163.com
基金资助:
Gentana Ge1,Lianggaoke Yue2,3,*(),Xiaosong Li2,Cuicui Ji3,Jianhe Wang1,Tong Shen2,Tiancan Wang2,4
Received:
2024-04-19
Online:
2025-03-25
Published:
2025-03-27
Contact:
Lianggaoke Yue
E-mail:yuelianggaoke@163.com
摘要:
目的: 构建适宜于退耕还林地块的树高样本集,协同遥感数据与机器学习方法估测退耕还林地块树高,为新一轮退耕还林成效监测提供参考依据。方法: 为实现对内蒙古新一轮退耕还林地块树高的准确估测,本研究提出了一种优化的GEDI样本筛选方法,构建成一套适宜于退耕还林地块的高质量树高样本集;借助Sentinel-2中高空间分辨率遥感数据和地形数据,利用梯度提升树算法对退耕还林地块树高进行估测,并对内蒙古退耕还林地块的树高状况进行分析。结果: 基于GEDI和Sentinel-2机器学习模型,可以实现退耕还林乔木地块树高的准确估测,决定系数R2为0.73,估测精度EA为72%,均方根误差RMSE为1.82 m;GEDI样本的优化筛选能提升退耕还林地块树高估测精度,与未筛选的样本相比模型估测精度R2提高了0.32,RMSE降低了0.83 m,EA提升了13%;红边归一化植被指数、差值植被指数、海拔、坡度与坡向变量重要性较高,累计贡献度超过50%,由此证明植被指数与地形信息是树高估算的关键重要性因子。内蒙古退耕还林地块乔木树高区间为2.5~20 m,平均为5.5 m,其中53.51%分布在5~10 m。结论: 本研究所提出的GEDI样本优化筛选方法显著提高了退耕还林地块树高估测的精度,证明了针对退耕还林地块特点优化筛选的有效性。基于遥感数据与机器学习,本研究实现了内蒙古退耕还林乔木地块树高的估测,为退耕还林地块树高估测提供了可行方法。
中图分类号:
格根塔娜,月亮高可,李晓松,姬翠翠,王建和,沈通,王天璨. 基于GEDI和Sentinel-2的内蒙古退耕还林地块树高估测[J]. 林业科学, 2025, 61(3): 16-26.
Gentana Ge,Lianggaoke Yue,Xiaosong Li,Cuicui Ji,Jianhe Wang,Tong Shen,Tiancan Wang. Estimation of Tree Height in the Grain for Green Program Stands of Inner Mongolia Based on GEDI and Sentinel-2[J]. Scientia Silvae Sinicae, 2025, 61(3): 16-26.
表1
变量特征①"
变量类型 Variable type | 变量名称 Variable name | 描述 Description | 公式 Formula |
光谱信息 Spectral information | B2、B3、B4、B5、B6、B7、B8、B11、B12 | Sentinel-2影像波段信息 Sentinel-2 image band information | |
NDVI | 归一化植被指数 Normalized difference vegetation index | ||
RENDVI | 红边归一化植被指数 Red edge normalized difference vegetation index | ||
NDWI | 归一化差值水体指数 Normalized difference water index | ||
EVI | 增强植被指数 Enhanced vegetation index | ||
RVI | 比值植被指数 Ratio vegetation index | ||
植被指数 Vegetation index | DVI | 差值植被指数 Difference vegetation index | |
VDVI | 差异性植被指数 Visible-band difference vegetation index | ||
SAVI | 土壤调节植被指数 Soil adjusted vegetation index | ||
MSAVI | 改良土壤调节植被指数 Modified soil adjusted vegetation index | ||
NBR | 归一化燃烧率指数 Normalized burn ratio index | ||
NDMI | 归一化差值水分指数 Normalized difference moisture index | ||
DEM | 从DEM中提取高程信息 Extract elevation information from the DEM | ||
地形信息 Terrain information | Aspect | 从DEM中提取坡向信息 Extract aspect information from the DEM | |
Slope | 从DEM中提取坡度信息 Extract slope information from the DEM |
陈宝瑞, 辛晓平, 朱玉霞, 等. 内蒙古荒漠化年际动态变化及与气候因子分析. 遥感信息, 2007, (6): 39- 44, 104.
doi: 10.3969/j.issn.1000-3177.2007.06.010 |
|
Chen B R, Xin X P, Zhu Y X, et al. Change and analysis of annual desertification and climate factors in Inner Mongolia using MODlS data. Remote Sensing Information, 2007, (6): 39- 44, 104.
doi: 10.3969/j.issn.1000-3177.2007.06.010 |
|
陈 浩, 权倍平, 李占斌, 等. 北洛河上游流域植被覆盖度时空变化及其地形分异特征. 水土保持研究, 2024, 31 (2): 219- 227, 239. | |
Chen H, Quan B P, Li Z B, et al. Spatiotemporal changes of vegetation coverage and its topographic differentiation characteristics in the upper reaches of Beiluo river watershed. Research of Soil and Water Conservation, 2024, 31 (2): 219- 227, 239. | |
顾润源, 周伟灿, 白美兰, 等. 气候变化对黄河内蒙古段凌汛期的影响. 中国沙漠, 2012, 32 (6): 1751- 1756. | |
Gu R Y, Zhou W C, Bai M L, et al. Influence of climate change on ice slush period at Inner Mongolia section of Yellow River. Journal of Desert Research, 2012, 32 (6): 1751- 1756. | |
阚鸿程, 张慧芳, 孟宝平, 等. 激光雷达飞行参数对低矮植被高度反演的影响——以大疆禅思L1为例. 草业科学, 2023, 40 (10): 2513- 2527.
doi: 10.11829/j.issn.1001-0629.2022-0639 |
|
Kan H C, Zhang H F, Meng B P, et al. LiDAR flight parameter influence on low vegetation height inversion: a case study of DJI Zenmuse L1. Pratacultural Science, 2023, 40 (10): 2513- 2527.
doi: 10.11829/j.issn.1001-0629.2022-0639 |
|
李明泽, 郭鸿郡, 范文义, 等. 基于GWR的大兴安岭森林立地质量遥感分析. 林业科学, 2017, 53 (6): 56- 66.
doi: 10.11707/j.1001-7488.20170607 |
|
Li M Z, Guo H J, Fan W Y, et al. Remote sensing analysis of forest site quality in Daxing’an Mountain based on GWR. Scientia Silvae Sinicae, 2017, 53 (6): 56- 66.
doi: 10.11707/j.1001-7488.20170607 |
|
李晓婷, 杨丽帆, 邹友峰, 等. 采煤胁迫下干旱区植被生长周期红边指数动态变化. 煤炭学报, 2021, 46 (5): 1508- 1520. | |
Li X T, Yang L F, Zhou Y F, et al. Dynamic change of red edge vegetation index within a growth cycle in arid area under coal mining stress. Journal of China Coal Society, 2021, 46 (5): 1508- 1520. | |
李晓英, 禹 熙, 王 方, 等. 西北干旱荒漠地区退耕还林还草工程综合效益评价. 水土保持研究, 2023, 30 (1): 216- 223, 232. | |
Li X Y, Yu X, Wang F, et al. Comprehensive benefit evaluation on the project of converting farmland to forestland and grassland in arid desert area of northwest China. Research of Soil and Water Conservation, 2023, 30 (1): 216- 223, 232. | |
美合日阿依·莫一丁, 买买提·沙吾提, 李金朝. 基于Sentinel-2时间序列数据及物候特征的棉花种植区提取. 干旱区地理, 2022, 45 (6): 1847- 1859. | |
Moyidin M H R A Y, Sawuti M M T, Li J Z. Extraction of cotton planting area based on Sentinel-2 time series data and phenological characteristics. Arid Land Geography, 2022, 45 (6): 1847- 1859. | |
苗百岭, 梁存柱, 韩 芳, 等. 内蒙古主要草原类型植物物候对气候波动的响应. 生态学报, 2016, 36 (23): 7689- 7701. | |
Miao B L, Liang C Z, Han F, et al. Responses of phenology to climate change over the major grassland types. Acta Ecologica Sinica, 2016, 36 (23): 7689- 7701. | |
石 希, 夏军强, 周美蓉, 等. 融合星载LiDAR系统GEDI数据与Sentinel-2影像的长江中游洲滩典型禾本科植物高度动态研究. 湖泊科学, 2024, 36 (2): 562- 574.
doi: 10.18307/2024.0235 |
|
Shi X, Xia J Q, Zhou M R, et al. Integrating GEDI and Sentinel-2 data for mapping height dynamics of floodplain representative Poaceae vegetation in the Middle Yangtze River. Journal of Lake Sciences, 2024, 36 (2): 562- 574.
doi: 10.18307/2024.0235 |
|
王爱娟. 2015. ICESat-GLAS大光斑LiDAR波形模拟及森林最大冠层高度反演研究. 哈尔滨: 东北林业大学. | |
Wang A J. 2015. ICESat-GLAS large-footprint LiDAR waveform simulation and study on sorest maximum canopy height estimation. Harbin: Northeast Forestry University. [in Chinese] | |
王 兵, 牛 香, 郭 珂. 国家退耕还林工程生态监测体系区划布局研究. 陆地生态系统与保护学报, 2022, 2 (1): 57- 72.
doi: 10.12356/j.2096-8884.2021-0017 |
|
Wang B, Niu X, Guo K. The layout of the ecological monitoring system of the Gain for Green Project in China. Terrestrial Ecosystem and Conservation, 2022, 2 (1): 57- 72.
doi: 10.12356/j.2096-8884.2021-0017 |
|
吴东昊. 2023. 荒漠植物高光谱特性与叶绿素含量预测建模优化研究. 呼和浩特: 内蒙古农业大学. | |
Wu D H. 2023. Prediction modeling and optimization of chlorophyll content based on Hyperspectral information of desert plants. Hohhot: Inner Mongolia Agricultural University. [in Chinese] | |
吴 英, 张万幸, 张丽琼, 等. 基于DEM的地形与植被分布关联分析. 东北林业大学学报, 2012, 40 (11): 96- 98.
doi: 10.3969/j.issn.1000-5382.2012.11.023 |
|
Wu Y, Zhang W X, Zhang L Q, et al. Analysis of correlation between terrain and forest spatial distribution based on DEM. Journal of Northeast Forestry University, 2012, 40 (11): 96- 98.
doi: 10.3969/j.issn.1000-5382.2012.11.023 |
|
徐晋涛, 陶 然, 徐志刚. 退耕还林: 成本有效性、结构调整效应与经济可持续性——基于西部三省农户调查的实证分析. 经济学(季刊), 2004, (4): 139- 162. | |
Xu J T, Tao R, Xu Z G. Sloping land conversion program: cost-effectiveness, structural effect and economic sustainability. China Economic Quarterly, 2004, (4): 139- 162. | |
叶静芸, 吴 波, 贾晓红, 等. 极干旱区稀疏荒漠植被地上生物量遥感估算. 干旱区地理, 2022, 45 (2): 478- 487.
doi: 10.12118/j.issn.10006060.2021.177 |
|
Ye J Y, Wu B, Jia X H, et al. Estimation of aboveground biomass of sparse desert vegetation based on remote sensing techniques in hyper-arid area. Arid Land Geography, 2022, 45 (2): 478- 487.
doi: 10.12118/j.issn.10006060.2021.177 |
|
袁鸷慧, 聂 胜, 张合兵, 等. GEDI地面高程和森林冠层高度的精度评价与影响分析. 遥感技术与应用, 2022, 37 (5): 1056- 1070. | |
Yuan Z H, Ni S, Zhang H B, et al. Accuracy evaluation and impact analysis of GEDI ground elevation and canopy height. Remote Sensing Technology and Application, 2022, 37 (5): 1056- 1070. | |
张 超, 高 晶, 赵艳丽. 基于GIS内蒙古荒漠草原气候变化分析. 草业科学, 2014, 31 (12): 2212- 2220.
doi: 10.11829/j.issn.1001-0629.2014-0067 |
|
Zhang C, Gao J, Zhao Y L. Climate changes analysis in the Inner Mongolia desert grassland based on GlS. Pratacultural Science, 2014, 31 (12): 2212- 2220.
doi: 10.11829/j.issn.1001-0629.2014-0067 |
|
张增磊, 吕 达, 赵 灯, 等. 多种数值插值算法插值性能分析及优化. 科学技术创新, 2021, (36): 8- 12.
doi: 10.3969/j.issn.1673-1328.2021.36.003 |
|
Zhang Z L, Lv D, Zhao D, et al. Analysis and optimization of interpolation performance of a variety of numerical interpolation algorithms. Scientific and Technological Innovation, 2021, (36): 8- 12.
doi: 10.3969/j.issn.1673-1328.2021.36.003 |
|
韩明辉, 邢艳秋, 李国元, 等. GEDI不同算法组数据反演森林最大冠层高度和生物量精度比较. 中南林业科技大学学报, 2022, 42 (10): 72- 82. | |
Zhao M H, Xing Y Q, Li G Y, et al. Comparison of the accuracy of the maximum canopy height and biomass inversion of the data of different GEDI algorithm groups. Journal of Central South University of Forestry & Technology, 2022, 42 (10): 72- 82. | |
郑 颖, 刘华民, 刘东伟, 等. 内蒙古湿地空间分布格局及动态变化研究. 环境科学与技术, 2016, 39 (12): 1- 6,16. | |
Zheng Y, Liu H M, Liu D W, et al. Spatial distribution pattern and dynamic change of wetlands in Inner Mongolia. Environmental Science & Technology, 2016, 39 (12): 1- 6,16. | |
Atmani F, Bookhagen B, Smith T. Measuring vegetation heights and their seasonal changes in the western namibian savanna using spaceborne lidars. Remote Sensing, 2022, 14 (12): 2928.
doi: 10.3390/rs14122928 |
|
Clevers J G P W, Gitelson A A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. International Journal of Applied Earth Observation and Geoinformation, 2013, 23, 344- 351.
doi: 10.1016/j.jag.2012.10.008 |
|
Dubayah R, Blair J B, Goetz S, et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the earth's forests and topography. Science of Remote Sensing, 2020, 1, 100002.
doi: 10.1016/j.srs.2020.100002 |
|
Duncanson L, Kellner J R, Armston J, et al. Aboveground biomass density models for NASA's global ecosystem dynamics investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.
doi: 10.1016/j.rse.2021.112845 |
|
Gaumont-Guay D, Black T A, Barr A G, et al. Eight years of forest-floor CO2 exchange in a boreal black spruce forest: Spatial integration and long-term temporal trends. Agricultural & Forest Meteorology, 2014, 184, 25- 35. | |
Lang N, Jetz W, Schindler K, et al. A high-resolution canopy height model of the Earth. Nature Ecology & Evolution, 2023, 7 (11): 1778- 1789. | |
Li W, Niu Z, Shang R, et al. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data. International Journal of Applied Earth Observation and Geoinformation, 2020, 92, 102163.
doi: 10.1016/j.jag.2020.102163 |
|
Li X X, Wessels K, Armston J, et al. First validation of GEDI canopy heights in African savannas. Remote Sensing of Environment, 2023, 285, 113402.
doi: 10.1016/j.rse.2022.113402 |
|
Liu X Q, Su Y J, Hu T Y, et al. Neural network guided interpolation for mapping canopy height of China’s forests by integrating GEDI and ICESat-2 data. Remote Sensing of Environment, 2022, 269, 112844.
doi: 10.1016/j.rse.2021.112844 |
|
Ni X L, Zhou Y K, Cao C X, et al. Mapping forest canopy height over continental China using multi-source remote sensing data. Remote Sensing, 2015, 7 (7): 8436- 8452.
doi: 10.3390/rs70708436 |
|
Potapov P, Li X Y, Hernandez-Serna A, et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, 2021, 253, 112165.
doi: 10.1016/j.rse.2020.112165 |
|
Simard M, Pinto N, Fisher J B, et al. 2011. Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research: Biogeosciences, 116: G04021. | |
Zhu X X, Wang C, Nie S, et al. Mapping forest height using photon-counting LiDAR data and Landsat 8 OLI data: a case study in Virginia and North Carolina, USA. Ecological Indicators, 2020, 114, 106287.
doi: 10.1016/j.ecolind.2020.106287 |
|
Zandler H, Brenning A, Samimi C. Quantifying dwarf shrub biomass in an arid environment: comparing empirical methods in a high dimensional setting. Remote Sensing of Environment, 2015, 158, 140- 155.
doi: 10.1016/j.rse.2014.11.007 |
|
Zhang X, Liu L Y, Chen X D, et al. GLC_FCS30: global land-cover product with fine classification system at 30m using time-series Landsat imagery. Earth System Science Data, 2021, 13 (6): 2753- 2776.
doi: 10.5194/essd-13-2753-2021 |
|
Zhao T, Mu X H, Song W J, et al. Mapping spatially seamless fractional vegetation cover over China at a 30-m resolution and semimonthly intervals in 2010-2020 based on Google Earth Engine. Journal of Remote Sensing, 2023, 3, 0101.
doi: 10.34133/remotesensing.0101 |
[1] | 笪明慧,冉松松,傅彦榕,邹秉章,王思荣,万晓华,余再鹏,黄志群. 邻体树种多样性对杉木叶片氮与钾、钙、镁计量比的影响[J]. 林业科学, 2024, 60(6): 37-43. |
[2] | 徐奇刚,雷相东,郑宇,胡兴国,雷渊才,何潇. 基于Richards方程的冷杉树高曲线深度神经网络激活函数[J]. 林业科学, 2023, 59(10): 50-56. |
[3] | 黄宏超,谢栋博,段光爽,张状,张海江,符利勇. 华北落叶松和白桦半参数树高曲线模型[J]. 林业科学, 2022, 58(10): 101-110. |
[4] | 王彬,田相林,曹田健. 油松幼树树高生长预测的不确定性贝叶斯分析[J]. 林业科学, 2020, 56(11): 73-86. |
[5] | 毛学刚, 姚瑶, 范文义. 基于Landsat长时间序列的森林扰动参数提取与树高估算[J]. 林业科学, 2019, 55(3): 79-87. |
[6] | 王冬至, 张冬燕, 李永宁, 张志东, 李大勇, 黄选瑞. 基于贝叶斯法的针阔混交林树高与胸径混合效应模型[J]. 林业科学, 2019, 55(11): 85-94. |
[7] | 耿林, 李明泽, 范文义, 王斌. 基于机载LiDAR的单木结构参数及林分有效冠的提取[J]. 林业科学, 2018, 54(7): 62-72. |
[8] | 尤号田, 邢艳秋, 彭涛, 丁建华. 机载LiDAR航带旁向重叠对针叶林结构参数估测的影响[J]. 林业科学, 2018, 54(6): 109-118. |
[9] | 娄明华, 张会儒, 雷相东, 李春明, 臧颢. 基于空间自相关的天然蒙古栎阔叶混交林林木胸径-树高模型[J]. 林业科学, 2017, 53(6): 67-76. |
[10] | 刘鲁霞, 庞勇, 李增元. 基于地基激光雷达的亚热带森林单木胸径与树高提取[J]. 林业科学, 2016, 52(2): 26-37. |
[11] | 王冬至, 张冬燕, 张志东, 黄选瑞. 基于非线性混合模型的针阔混交林树高与胸径关系[J]. 林业科学, 2016, 52(1): 30-36. |
[12] | 祖笑锋, 倪成才, Gorden Nigh, 覃先林. 基于混合效应模型及EBLUP预测美国黄松林分优势木树高生长过程[J]. 林业科学, 2015, 51(3): 25-33. |
[13] | 张雄清, 张建国, 段爱国. 基于贝叶斯法估计杉木人工林树高生长模型[J]. 林业科学, 2014, 50(3): 69-75. |
[14] | 李海奎;法蕾. 基于分级的全国主要树种树高-胸径曲线模型[J]. 林业科学, 2011, 47(10): 83-90. |
[15] | 于颖;范文义;李明泽;杨曦光. 利用大光斑激光雷达数据估测树高和生物量[J]. 林业科学, 2010, 46(9): 84-87. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||