欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (3): 16-26.doi: 10.11707/j.1001-7488.LYKX20240213

• 专题:科技赋能“三北”攻坚 • 上一篇    下一篇

基于GEDI和Sentinel-2的内蒙古退耕还林地块树高估测

格根塔娜1,月亮高可2,3,*(),李晓松2,姬翠翠3,王建和1,沈通2,王天璨2,4   

  1. 1. 内蒙古自治区林业与草原工作总站 呼和浩特 010010
    2. 中国科学院空天信息创新研究院 北京 100094
    3. 重庆交通大学智慧城市学院 重庆 400074
    4. 中国科学院大学 北京 100101
  • 收稿日期:2024-04-19 出版日期:2025-03-25 发布日期:2025-03-27
  • 通讯作者: 月亮高可 E-mail:yuelianggaoke@163.com
  • 基金资助:
    科技基础资源调查专项(2022FY202300)。

Estimation of Tree Height in the Grain for Green Program Stands of Inner Mongolia Based on GEDI and Sentinel-2

Gentana Ge1,Lianggaoke Yue2,3,*(),Xiaosong Li2,Cuicui Ji3,Jianhe Wang1,Tong Shen2,Tiancan Wang2,4   

  1. 1. Forestry and Grassland Work Station of Inner Mongolia Hohhot 010010
    2. Aerospace Information Research Institute, Chinese Academy of Sciences Beijing 100094
    3. Smart City Academy, Chongqing Jiaotong University Chongqing 400074
    4. University of Chinese Academy of Sciences Beijing 100101
  • Received:2024-04-19 Online:2025-03-25 Published:2025-03-27
  • Contact: Lianggaoke Yue E-mail:yuelianggaoke@163.com

摘要:

目的: 构建适宜于退耕还林地块的树高样本集,协同遥感数据与机器学习方法估测退耕还林地块树高,为新一轮退耕还林成效监测提供参考依据。方法: 为实现对内蒙古新一轮退耕还林地块树高的准确估测,本研究提出了一种优化的GEDI样本筛选方法,构建成一套适宜于退耕还林地块的高质量树高样本集;借助Sentinel-2中高空间分辨率遥感数据和地形数据,利用梯度提升树算法对退耕还林地块树高进行估测,并对内蒙古退耕还林地块的树高状况进行分析。结果: 基于GEDI和Sentinel-2机器学习模型,可以实现退耕还林乔木地块树高的准确估测,决定系数R2为0.73,估测精度EA为72%,均方根误差RMSE为1.82 m;GEDI样本的优化筛选能提升退耕还林地块树高估测精度,与未筛选的样本相比模型估测精度R2提高了0.32,RMSE降低了0.83 m,EA提升了13%;红边归一化植被指数、差值植被指数、海拔、坡度与坡向变量重要性较高,累计贡献度超过50%,由此证明植被指数与地形信息是树高估算的关键重要性因子。内蒙古退耕还林地块乔木树高区间为2.5~20 m,平均为5.5 m,其中53.51%分布在5~10 m。结论: 本研究所提出的GEDI样本优化筛选方法显著提高了退耕还林地块树高估测的精度,证明了针对退耕还林地块特点优化筛选的有效性。基于遥感数据与机器学习,本研究实现了内蒙古退耕还林乔木地块树高的估测,为退耕还林地块树高估测提供了可行方法。

关键词: GEDI, 内蒙古退耕还林, 树高, 梯度提升树, 可持续森林管理

Abstract:

Objective: A tree height sample set suitable for Grain for Green Project (GGP) stands was constructed, and the machine learning methods were integrated with remote sensing data to estimate tree height in GGP plots, in order to provide a reference basis for monitoring the effectiveness of the new round of GGP. Method: To accurately estimate the tree height of the new round of GGP stands in Inner Mongolia, this study proposed an optimized GEDI sample selection method, and constructed a high-quality tree height sample set suitable for the GGP stands in Inner Mongolia. With Sentinel-2 medium high spatial resolution remote sensing data and terrain data, the gradient boosting tree algorithm was applied to estimate the tree heights in the GGP stands, and analyze the tree height status in the GGP stands. Result: Based on the GEDI and Sentinel-2 machine learning model, the tree heights in the GGP stands were able to be accurately estimated with a coefficient of determination (R2) of 0.73, an estimation accuracy (EA) of 72%, and a root mean square error (RMSE) of 1.82 m. The optimized selection of GEDI samples improved the estimation accuracy for tree height in the GGP stands, with an increase in model estimation accuracy R2 by 0.32, a decrease in RMSE by 0.83 m, and an increase in EA by 13% compared to the unselected samples. The red-edge normalized vegetation index, difference vegetation index, and elevation, slope, and aspect variables are of high importance, with a cumulative contribution of over 50%, proving that vegetation indices and terrain information are key factors for tree height estimation. The distribution of tree height intervals in Inner Mongolia's GGP stands ranges from 2.5–20 m, with an average height of 5.5 m, mainly distributed in the 5–10 m range, which accounts for 53.51%. Conclusion: The GEDI sample optimization screening method proposed in this study can significantly improve the accuracy of tree height estimation in the GGP stands, demonstrating the effectiveness of tailoring the screening process to the specific characteristics of the GGP stands. Based on remote sensing data and machine learning, this study has achieved the estimation of tree height for the new round of GGP stands in Inner Mongolia, providing a feasible approach for tree height estimation in these regions.

Key words: GEDI, Grain for Green in Inner Mongolia, tree height, gradient boosting tree, sustainable forest management

中图分类号: