林业科学 ›› 2025, Vol. 61 ›› Issue (1): 115-125.doi: 10.11707/j.1001-7488.LYKX20240088
吴翠萍1,金曹亮1,应建平2,索金伟1,吴家胜1,胡渊渊1,*()
收稿日期:
2024-02-15
出版日期:
2025-01-25
发布日期:
2025-02-09
通讯作者:
胡渊渊
E-mail:hyy_1985@zafu.edu.cn
基金资助:
Cuiping Wu1,Caoliang Jin1,Jianping Ying2,Jinwei Suo1,Jiasheng Wu1,Yuanyuan Hu1,*()
Received:
2024-02-15
Online:
2025-01-25
Published:
2025-02-09
Contact:
Yuanyuan Hu
E-mail:hyy_1985@zafu.edu.cn
摘要:
目的: 探讨定额灌水对近成熟期香榧假种皮开裂的作用机制,提供促进假种皮开裂率和减少采收成本的理论依据。方法: 在香榧近成熟期设置定额灌水(25 cm处的土壤含水量约为26.5%)和对照处理(不作处理),测定假种皮的开裂率和硬度变化,结合石蜡切片观察解剖结构,分析乙烯释放量和细胞壁组分;基于转录组分析和实时荧光定量PCR,进一步揭示灌水促进假种皮开裂的内在机制。结果: 1) 灌水处理显著增加香榧假种皮的开裂率至72.55%,降低硬度40.40%(P≤0.05),乙烯释放量增加1.32倍;显微结构显示,灌水处理的假种皮薄壁细胞层树脂道群出现明显的破裂分离现象,薄壁组织层厚度显著增加20.12%。2) 灌水处理显著增加假种皮中的水溶性果胶(WSP),CDTA可溶性果胶(CSP)、纤维素和半纤维素含量均显著减少;假种皮开裂率与WSP呈显著正相关,与CSP呈显著负相关。3) 灌水处理后假种皮细胞壁代谢相关基因TgEXPs、TgPMEs和乙烯合成相关基因TgACOs的表达量均显著上调,其中TgEXP1、TgEXP2、TgPME1、TgPME2、TgACO1的表达量与硬度、CSP均呈显著负相关,与假种皮开裂率、乙烯释放量、WSP均呈显著正相关。结论: 在近成熟期,定额灌水通过增加乙烯释放量及改变细胞壁组分和相关基因表达,显著促进香榧假种皮开裂、缩短开裂期,为提高开裂率的栽培措施提供可靠的理论依据。
中图分类号:
吴翠萍,金曹亮,应建平,索金伟,吴家胜,胡渊渊. 近成熟期定额灌水对香榧假种皮开裂的解剖学变化及基因表达的影响[J]. 林业科学, 2025, 61(1): 115-125.
Cuiping Wu,Caoliang Jin,Jianping Ying,Jinwei Suo,Jiasheng Wu,Yuanyuan Hu. Effects of Quota Water Addition on Anatomical Changes and Gene Expression in Aril Cracking of Torreya grandis cv. ‘Merrilii’ During Near Maturity Stage[J]. Scientia Silvae Sinicae, 2025, 61(1): 115-125.
表1
RT-qPCR 引物序列"
基因 Gene | 上游引物 Forward primers (5'-3') | 下游引物 Reverse primer (5'-3') |
Q-TgEXP1 | GCGCGTAGCTGCTTCTATTA | AGCGTAAGAGGCCCATATCT |
Q-TgEXP2 | AAGAAGCTTCGTTGACCCG | CCGAGTTGAGCCATTACGG |
Q-TgEXP3 | AAAATGGGCATCCTACGCTC | TCCATTAACCATCCCAGGGTA |
Q-TgEXP4 | TGCAGTGTTGCTGTTTCTCA | CGCCATAAAATGTAGCGTGC |
Q-TgEXP5 | CGCCAAATATCGACCTGGAA | GCCAAACTAATGCAGCGTAG |
Q-TgEXP6 | TCTGTGGTTATCTCCTCGTCT | CATCGCTGCCACCATAGAA |
Q-TgEXP7 | AGCTGTACTCAAGACTGCTCT | ATTGCTAAGATACCCACCAGG |
Q-TgEXP8 | TGGCCTTTCTCTGTGGGTAA | ATCACCGCCCCCATAAAATG |
Q-TgPME1 | TAATCCGAGCTACTGAGGCT | ACTATCAATGCCGAAGCCAG |
Q-TgPME2 | TTCTTGGCTAGGTTCGATGC | TACGCCATTACGCTCCTCTA |
Q-TgACO1 | GGAACAGTGAAGCCCTGAAG | GGATGTTGCCCTCTCAGAAA |
Q-TgACO2 | TGCCTCCCTTTTCTGGTTTG | CATTTGCAATTTGGGCCATGA |
安普南, 杨晓旭, 刘 畅, 等. 菜豆种皮开裂过程中木质素含量及相关酶活变化. 黑龙江大学工程学报, 2021, 12 (2): 90- 96. | |
An P N, Yang X X, Liu C, et al. Changes in lignin content and related enzyme activities during seed coat dehiscence of kidney bean. Journal of Engineering of Heilongjiang University, 2021, 12 (2): 90- 96. | |
曹建康, 姜微波, 赵玉梅. 2007. 果蔬采后生理生化实验指导. 北京: 中国轻工业出版社. | |
Cao J K, Jiang W B, Zhao Y M. 2007. Experimental guidance of postharvest physiology and biochemistry of fruits and vegetables. Beijing: China Light Industry Press. [in Chinese] | |
高美玲, 于长宝, 魏晓明, 等. 抗裂与易裂果西瓜果皮解剖结构及酶活性比较. 北方园艺, 2016, 40 (20): 92- 96. | |
Gao M L, Yu C B, Wei X M, et al. Comparison of anatomical structure and enzyme activity of crack-resistant and susceptible fruit watermelon. Northern Horticulture, 2016, 40 (20): 92- 96. | |
郭红彦, 白晋华, 段风琴, 等. 钙处理对‘壶瓶枣’裂果细胞壁降解酶活性及组织结构的影响. 园艺学报, 2019, 46 (8): 1486- 1494. | |
Guo H Y, Bai J H, Duan F Q, et al. Effect of CaCl2 treatment on cell wall degrading enzymes activities and microstructure of fruit cracking of Ziziphus Jujuba ‘Huping Zao’. Chinese Journal of Horticulture, 2019, 46 (8): 1486- 1494. | |
阚 娟, 刘 俊, 金昌海. 桃果实成熟软化与细胞壁降解相关糖苷酶及乙烯生物合成的关系. 中国农业科学, 2012, 45 (14): 2931- 2938.
doi: 10.3864/j.issn.0578-1752.2012.14.016 |
|
Kan J, Lin J, Jin C H. Study on the relationship between peach fruit softening, cell wall degradation related glycosidase and ethlylene biosynthesis. Scientia Agricultura Sinica, 2012, 45 (14): 2931- 2938.
doi: 10.3864/j.issn.0578-1752.2012.14.016 |
|
雷 琴, 任小林. 秦冠和富士苹果果实成熟过程中的质地变化特性. 西北农业学报, 2007, (1): 213- 216.
doi: 10.3969/j.issn.1004-1389.2007.01.052 |
|
Lei Q, Ren X L. Characteristics of texture change with qinguan and fuji apples during ripening. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, (1): 213- 216.
doi: 10.3969/j.issn.1004-1389.2007.01.052 |
|
李冬冬. 2022. 温室番茄的灌溉致裂力学机制研究. 杨凌: 西北农林科技大学. | |
Li D D. 2022. Mechanical mechanism of irrigation-induced cracking to tomato fruit in greenhouse. Yangling: Northwest A&F University. [in Chinese] | |
李 敏. 2013. 乙烯调控早熟苹果果实软化和裂果机理的初步研究. 泰安: 山东农业大学. | |
Li M. 2013. The study on the mechanisms of ethylene-regulated early ripening apple fruit softening and dehiscence. Tai’an: Shandong Agricultural University. [in Chinese] | |
黎章矩, 戴文圣. 2007. 中国香榧. 北京: 科学出版社. | |
Li Z J, Dai W S. 2007. Chinese Torreya grandis. Beijing: China Science Press. [in Chinese] | |
林敏娟, 张晶晶, 王建宇, 等. 枣裂果生理特性与相关基因的表达分析. 山西农业大学学报(自然科学版), 2021, 41 (6): 67- 74. | |
Lin M J, Zhang J J, Wang J Y, et al. Physiological characteristics of Jujube fruit cracking and expression analysis of related genes. Journal of Shanxi Agricultural University(Natural Science Edition), 2021, 41 (6): 67- 74. | |
朱暖暖. 2021. 灌水对高温胁迫下玉米生长发育及产量的调控效应. 郑州: 河南农业大学. | |
Zhu N N. 2021. Regulating effects of irrigation on maize (Zea mays L.) growth and yield under high temperature stress . Zhengzhou: Henan Agricultural University. [in Chinese] | |
单燕飞, 王为宇, 项伟霞, 等. 堆沤温度对后熟过程中榧籽主要营养物质变化的影响. 林业科学, 2019, 55 (7): 46- 56.
doi: 10.11707/j.1001-7488.20190705 |
|
Shan Y F, Wang W Y, Xiang W X, et al. Effect of retting temperature on transformation of main nutrients in seeds of different Torreya grandis cultivars during after-ripening period. Scientia Silvae Sinicae, 2019, 55 (7): 46- 56.
doi: 10.11707/j.1001-7488.20190705 |
|
沈家怡. 2022. 氮沉降下香榧假种皮开裂机制的初探. 杭州: 浙江农林大学. | |
Shen J Y. 2022. Preliminary study on cracking mechanism of Torreya grandis aril under nitrogen deposition. Hangzhou: Zhejiang A & F University. [in Chinese] | |
沈家怡, 吴翠萍, 姚 佳, 等. 香榧假种皮开裂过程中组织结构、细胞壁代谢的变化. 林业科学, 2023, 59 (2): 86- 95.
doi: 10.11707/j.1001-7488.LYKX20220314 |
|
Shen J Y, Wu C P, Yao J, et al. Changes of anatomic structure and cell wall metabolism of Torreya grandis cv. ‘Merrilii’ aril during cracking. Scientia Silvae Sinicae, 2023, 59 (2): 86- 95.
doi: 10.11707/j.1001-7488.LYKX20220314 |
|
辛海青, 周军永, 孙耀星, 等. 枣易裂与抗裂品种灌水后果皮结构和扩张蛋白基因表达差异研究. 园艺学报, 2021, 48 (9): 1785- 1793. | |
Xin H Q, Zhou J Y, Sun Y X, et al. Differences in the pericarp structure and the expression of expansin genes after irrigation between easily cracked and resistant jujube. Chinese Journal of Horticulture, 2021, 48 (9): 1785- 1793. | |
杨芯芳. 2021. 水分处理对枣裂果及品质的影响. 阿拉尔: 塔里木大学. | |
Yang Q F. 2021. Effect of water treatment on fruit cracking and quality of jujube . Aral: Tarim University. [in Chinese] | |
叶 珊, 王为宇, 周敏樱, 等. 不同采收成熟度和堆沤方式对香榧种子堆沤后熟品质的影响. 林业科学, 2017, 53 (11): 43- 51.
doi: 10.11707/j.1001-7488.20171105 |
|
Ye S, Wang W Y, Zhou M Y, et al. Effects of different harvest maturity and after-ripening ways on the harvested quality of Torreya grandis ‘Merrillii’ seeds. Scientia Silvae Sinicae, 2017, 53 (11): 43- 51.
doi: 10.11707/j.1001-7488.20171105 |
|
张彦苹, 王 晨, 朱旭东. 2023. 膨大期果面喷施IAA对桃成熟期果实性状和相关基因表达的影响. 西北植物学报, 43(9): 1499-1508. | |
Zhang Y P, Wang C, Zhu X D. 2023. Effects of IAA treatment at expansion stage on fruit traits and related gene expression in peach fruit at ripening stage. Acta Botanica Boreali-Occidentalia Sinica,43(9):1499-1508. [in Chinese] | |
Balbontín C, Ayala H, M Bastías R, et al. Cracking in sweet cherries: A comprehensive review from a physiological, molecular, and genomic perspective. Chilean Journal of Agricultural Research, 2013, 73 (1): 66- 72.
doi: 10.4067/S0718-58392013000100010 |
|
Bennett A B, Labavitch J M. Ethylene and ripening-regulated expression and function of fruit cell wall modifying proteins. Plant Science, 2008, 175, 130- 136.
doi: 10.1016/j.plantsci.2008.03.004 |
|
Brummell D A, Harpster M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol, 2001, 47 (1-2): 311- 40. | |
Chen J J, Duan Y J, Hu Y L, et al. Transcriptome analysis of atemoya pericarp elucidates the role of polysaccharide metabolism in fruit ripening and cracking after harvest. BMC Plant Biology, 2019, 19, 219.
doi: 10.1186/s12870-019-1756-4 |
|
Huang W N, Liu H K, Zhang H H, et al. Ethylene-induced changes in lignification and cell wall-degrading enzymes in the roots of mungbean (Vigna radiata) sprouts. Plant Physiology & Biochemistry, 2013, 73, 412- 419. | |
Jiang F, Lopez A, Jeon S, et al. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. Horticulture research, 2019, 6, 17.
doi: 10.1038/s41438-018-0105-3 |
|
Kasai S, Hayama H, Kashimura Y, et al. Relationship between fruit cracking and expression of the expansin gene MdEXPA3 in ‘Fuji’apples (Malus domestica Borkh. ). Scientia Horticulturae, 2008, 116 (2): 194- 198.
doi: 10.1016/j.scienta.2007.12.002 |
|
Khadivi-Khub A. Physiological and genetic factors influencing fruit cracking. Acta Physiologiae Plantarum, 2015, 37 (1): 1- 14. | |
Knoche M, Peschel S. Studies on water transport through the sweet cherry fruit surface. VI. Effect of hydrostatic pressure on water uptake. The Journal of Horticultural Science and Biotechnology, 2002, 77 (5): 609- 614.
doi: 10.1080/14620316.2002.11511546 |
|
Knoche M, Winkler A. The mechanism of rain cracking of sweet cherry fruit. Italus Hortus, 2019, 26 (1): 59- 65. | |
Li N, Fu L J, Song Y Q, et al. Water entry in jujube fruit and its relationship with cracking. Aca Physiol Plant, 2019, 41, 162.
doi: 10.1007/s11738-019-2954-2 |
|
Mineo S, Naoya Y, Miho H, et al. Accumulation of proanthocyanidins and/or lignin deposition in buff-pigmeted soybean seed coats may lead to frequent defective cracking. Planta, 2017, 245 (3): 659- 670.
doi: 10.1007/s00425-016-2638-8 |
|
Moctezuma E, Smith D L, Gross K C. Antisense suppression of a β‐galactosidase gene (TBG6) in tomato increases fruit cracking. Journal of experimental botany, 2003, 54 (390): 2025- 2033.
doi: 10.1093/jxb/erg214 |
|
Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol, 2008, 11 (3): 266- 77.
doi: 10.1016/j.pbi.2008.03.006 |
|
Oeller P W, Lu M I N W, Taylor L P, et al. Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 1991, 254 (5030): 437- 439.
doi: 10.1126/science.1925603 |
|
Seo H, Sawant S S, Song J. Fruit cracking in pears: its cause and management- a review. Agronomy, 2022, 12, 2437.
doi: 10.3390/agronomy12102437 |
|
Vicente A R, Powell A, Greve L C, et al. Cell wall disassembly events in boysenberry (Rubus idaeus L. Rubus ursinus Cham. & Schldl. ) fruit development. Functional Plant Biology, 2007, 34 (7): 614- 623.
doi: 10.1071/FP07002 |
|
Wakabayashi K, Chun J P, Huber D J. Extensive solubilization and depolymerization of cell wall polysaccharides during avocado (Persea americana) ripening involves concerted action of polygalacturonase and pectinmethylesterase. Physiologia Plantarum, 2000, 108, 345- 352. | |
Wakasa Y, Kudo H, Ishikawa R, et al. Low expression of an endopolygalacturonase gene in apple fruit with long-term storage potential. Postharvest Biology and Technology, 2006, 39, 193- 198.
doi: 10.1016/j.postharvbio.2005.10.005 |
|
Wang A, Tan D, Tatsuki M, et al. Molecular mechanism of distinct ripening profiles in ‘Fuji’ apple fruit and its early maturing sports. Postharvest Biology and Technology, 2009, 52 (1): 38- 43.
doi: 10.1016/j.postharvbio.2008.09.001 |
|
Wang Y, Lu W J, Li J G, et al. Differential expression of two expansin genes in developing fruit of cracking-susceptible and-resistant litchi cultivars. Journal of the American Society for Horticultural Science, 2006, 131 (1): 118- 121.
doi: 10.21273/JASHS.131.1.118 |
|
Wu J S, Huang J D, Hong Y W, et al. De novo transcriptome sequencing of Torreya grandis reveals gene regulation in sciadonic acid biosynthesis pathway. Industrial Crops and Products, 2018, 120, 47- 60.
doi: 10.1016/j.indcrop.2018.04.041 |
|
Xue L, Sun M, Wu Z, et al. LncRNA regulates tomato fruit cracking by coordinating gene expression via a hormone-redox-cell wall network. BMC Plant Biology, 2020a, 20, 162.
doi: 10.1186/s12870-020-02373-9 |
|
Xue C, Guan S C, Chen J Q, et al. Genome wide identification and functional characterization of strawberry pectin methylesterases related to fruit softening. BMC plant biology, 2020b, 20 (1): 13.
doi: 10.1186/s12870-019-2225-9 |
|
Yan J W, Zeng H, Chen WJ, et al. New insights into the carotenoid biosynthesis in Torreya grandis kernels. Horticultural Plant Journal, 2023, 9 (6): 1108- 1118.
doi: 10.1016/j.hpj.2023.02.010 |
|
Zhang Z Y, Shi Y N, Ma Y C, et al. The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. Plant Biotechnology Journal, 2020, 18 (11): 2267- 2279.
doi: 10.1111/pbi.13382 |
[1] | 陈炳楠,杨风亭,孟盛旺,戴晓琴,寇亮,陈奕帆,王辉民,付晓莉. 红壤丘陵区马尾松林和湿地松林物候特征的时空变异及影响因素[J]. 林业科学, 2024, 60(8): 67-78. |
[2] | 刘艾涛,叶碧欢,陈友吾,宋其岩,李海波,沈建军,张昕. 香榧藻斑病病原的分离鉴定及防治药剂筛选[J]. 林业科学, 2024, 60(1): 111-119. |
[3] | 胡靓,邢蒙恩,房鸿嫄,刘瀚予,杜志琦,王楠,孙艳梅,范文忠,冯立超. 入侵性害虫桦潜叶蜂生活史及土壤生态适应性[J]. 林业科学, 2023, 59(5): 121-127. |
[4] | 沈家怡,吴翠萍,姚佳,吴家胜,张瑞,胡渊渊. 香榧假种皮开裂过程中组织结构、细胞壁代谢的变化[J]. 林业科学, 2023, 59(2): 86-95. |
[5] | 成豪,吴家胜,马爽,仲嘉玥,胡渊渊,喻卫武,俞晨良,宋丽丽,索金伟. 树形调整对香榧成花和坐果的影响[J]. 林业科学, 2023, 59(11): 49-58. |
[6] | 张苗,周生财,吴梦洁,童再康,韩潇,张俊红,程龙军. 闽楠中WRKY家族成员鉴定及缺磷胁迫下表达分析[J]. 林业科学, 2022, 58(2): 133-147. |
[7] | 郑刘辉,侯宇,张新凤,喻卫武,曾燕如,戴文圣. 香榧种子生长发育过程中假种皮挥发油的变化[J]. 林业科学, 2022, 58(11): 127-136. |
[8] | 唐芳,赵树堂,王丽娟,宋学勤,卢孟柱. 毛白杨次生维管系统再生过程的基因表达[J]. 林业科学, 2021, 57(9): 52-65. |
[9] | 李真,袁婷婷,朱成磊,杨克彬,宋新章,高志民. 毛竹铵态氮转运蛋白的分子特征及基因表达模式[J]. 林业科学, 2021, 57(7): 70-79. |
[10] | 康晓彤,陈辉. 华山松alpha-pinene synthase基因和(-)-limonene synthase基因的克隆及表达[J]. 林业科学, 2021, 57(6): 180-188. |
[11] | 苗雅慧,鞠丹,梁珂豪,王爱斌,刘峻玲,张凌云. 青杄转录因子基因PwNF-YB8的克隆与功能分析[J]. 林业科学, 2021, 57(5): 77-92. |
[12] | 周心怡,闫丽琼,吕云彤,孙丽丽,朱靖闻,曹传旺. 舞毒蛾取食诱导小黑杨苯丙烷代谢酶活性及其相关基因的表达[J]. 林业科学, 2021, 57(3): 108-116. |
[13] | 刘闵豪,李龙,叶靖,周轩辕,李周岐,范睿深,徐郡儡. 杜仲ARF基因家族全基因组鉴定和表达分析[J]. 林业科学, 2021, 57(3): 170-180. |
[14] | 韩昆瑾,郭娟娟,吕梓晴,李玉言,王世杰,杨敏生,王进茂. 转多基因107杨对目标害虫的抗性检测[J]. 林业科学, 2021, 57(11): 85-93. |
[15] | 王力敏,陈亚辉,杨庆山,曲日涛,姜姜,张金池,张洪霞,宋志忠. 山新杨钾离子通道基因PdbSKOR的克隆与功能分析[J]. 林业科学, 2021, 57(1): 53-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||