欢迎访问林业科学,今天是

林业科学 ›› 2024, Vol. 60 ›› Issue (9): 124-133.doi: 10.11707/j.1001-7488.LYKX20220898

• • 上一篇    下一篇

无人机松林图像早期松材线虫病害检测

谢婉滢,刘文萍*,王晗   

  1. 北京林业大学信息学院 北京100083
  • 收稿日期:2022-12-20 出版日期:2024-09-25 发布日期:2024-10-08
  • 通讯作者: 刘文萍
  • 基金资助:
    国家重点研发计划项目“松材线虫病灾变机制与可持续防控技术研究”(2021YFD1400900);国家重点研发计划项目“农林草病虫害数字化精准监测预警技术体系构建与应用”(2022YFD1400400)。

UAV Images of Pine Forests for Early Detection of Pine Wood Nematode Infestation

Wanying Xie,Wenping Liu*,Han Wang   

  1. College of Information, Beijing Forestry University Beijing 100083
  • Received:2022-12-20 Online:2024-09-25 Published:2024-10-08
  • Contact: Wenping Liu

摘要:

目的: 针对无人机松林图像中早期松材线虫病害特征不明显、尺度多变导致的目标漏检、误检问题,提出一种基于深度学习的早期松材线虫病害检测方法。方法: 首先,为达到在无人机机载端的模型部署需求,提出一种降低计算量和参数量的松材线虫病害检测方法;其次,为获取早期松材线虫病害更准确的特征,采用多种方式同时提取特征并融合以增强对有效特征的学习能力;然后,为进一步提高不同尺度特征的融合能力,添加注意力机制对齐相邻两级特征;最后,以辽宁抚顺大伙房试验林场无人机拍摄的早期松材线虫病害为研究对象,利用LablImg开源软件标注拍摄高度为100~240 m的图像,构建无人机早期松材线虫病害图像(EPI)数据集。结果: 在EPI数据集上的测试结果表明,本研究方法的平均精度(AP)最高达95.2%,相比YOLOv5s、YOLOX-s和YOLOv6s的AP分别提高3.1%、4%和0.9%;该模型体积仅12. 8 M,分别是YOLOv5s、YOLOX-s和YOLOv6s模型体积的23.6%、17.8%和8.9%。结论: 本研究方法具有较高识别精度,同时模型体积较小,可为无人机在机载端识别早期松材线虫病害提供可能。

关键词: 无人机图像, 松材线虫病, 深度学习, 目标检测

Abstract:

Objecive: Aiming at the problem of missed and misdetection of targets due to the inconspicuous features and variable scales of early pine wood nematode infestation in UAV (unmanned aerial vehicle) forest images, this paper proposes a detection method for early pine wood nematode infestation. Method: Firstly, in order to facilitate the deployment at the airborne end of the UAV, this paper proposes a pine wood nematode infestation detection method that reduces the amount of computation and the number of parameters; secondly, in order to obtain more accurate features of early pine wood nematode infestation, the method uses multiple ways of simultaneous extraction of features and fusion to enhance the learning ability of effective features; then, in order to further improve the fusion ability of features at different scales, the method uses the attention mechanism to Aligning the adjacent two levels of features; finally, taking the early pine nematode infestation photographed by UAV in Dahuofang experimental forest in Fushun, Liaoning Province as the object of study, the LablImg open source software was used to annotate the images captured at the heights of 100?240 m, and to construct the early pine nematode infestation images (EPI) (early pine wood nematode infestation) dataset. Results: The test results on the EPI dataset showed that the Average Precision (AP) of this paper's method reached up to 95.2%, which was improved by 3.1%, 4% and 0.9% compared with the AP of YOLOv5s, YOLOX-s and YOLOv6s, respectively; the volume of the model was only 12.8 M, which was the volume of YOLOv5s, YOLOx-s and YOLOv6s, respectively, 23.6%, 17.8% and 8.9% of the model volume of YOLOX-s and YOLOv6s, respectively. Conclusion: In summary, the method in this paper has high recognition accuracy while keeping the model volume small, which provides the possibility for UAVs to recognize early pine wood nematode infestation at the airborne end.

Key words: unmanned aerial vehicle imagery, pine wilt disease, deep learning, object detection

中图分类号: