|
理永霞, 王 璇, 刘振凯, 等. 松材线虫致病机理研究进展. 中国森林病虫, 2022, 41 (3): 11- 20.
|
|
Li Y X, Wang X, Liu Z K, et al. Research advance of pathogenic mechanism of pine wood nematode. Forest Pest and Disease, 2022, 41 (3): 11- 20.
|
|
骆有庆. 高度重视虫传危险性森林病害——松材线虫病. 昆虫知识, 2001, 38 (2): 150.
|
|
Luo Y Q. Insect mediated forest disease: Bursaphelenchus xylophilus. Chinese Bulletin of Entomology, 2001, 38 (2): 150.
|
|
孙 钰, 周 焱, 袁明帅, 等. 基于深度学习的森林虫害无人机实时监测方法. 农业工程学报, 2018, 34 (21): 74- 81.
doi: 10.11975/j.issn.1002-6819.2018.21.009
|
|
Sun Y, Zhou Y, Yuan M S, et al. UAV real-time monitoring for forest pest based on deep learning. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (21): 74- 81.
doi: 10.11975/j.issn.1002-6819.2018.21.009
|
|
陶 欢, 李存军, 谢春春, 等. 基于HSV阈值法的无人机影像变色松树识别. 南京林业大学学报(自然科学版), 2019, 43 (3): 99- 106.
|
|
Tao H, Li C J, Xie C C, et al. Recognition of red-attack pine trees from UAV imagery based on the HSV threshold method. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43 (3): 99- 106.
|
|
Bochkovskiy A, Wang C Y, Liao H Y M. 2020. YOLOv4: optimal speed and accuracy of object detection. arXiv: 2004.10934.
|
|
Dai J F, Qi H Z, Xiong Y W, et al. 2017. Deformable convolutional networks. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 764−773.
|
|
Ge Z, Liu S T, Wang F, et al. 2021. YOLOX: exceeding YOLO series in 2021. arXiv: 2107.08430.
|
|
Girshick R. 2015. Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 1440−1448.
|
|
Girshick R, Donahue J, Darrell T, et al. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 580−587.
|
|
Glorot X, Bordes A, Bengio Y. 2020. Deep sparse rectifier neural networks. Proceedings of the fourteenth international conference on artificial intelligence and statistics. Proceedings of the fourteenth international conference on artifcial intelligence and statistics, 315−323.
|
|
He K M, Zhang X Y, Ren S Q, et al. 2015. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770−778.
|
|
Hou Q B, Zhou D Q, Feng J S. 2021. Coordinate attention for efficient mobile network design. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13713−13722.
|
|
Hu J, Shen L, Sun G. 2018. Squeeze-and-excitation networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7132−7141.
|
|
Huang S H, Lu Z C, Cheng R, et al. 2021. FaPN: feature-aligned pyramid network for dense image prediction. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 864−873.
|
|
Li C Y, Li L, Jiang H L, et al. 2022. YOLOv6: a single-stage object detection framework for industrial applications. arXiv: 2209.02976.
|
|
Lin T Y, Dollár P, Girshick R, et al. 2017. Feature pyramid networks for object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2117−2125.
|
|
Liu S, Qi L, Qin H F, et al. 2018. Path aggregation network for instance segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 8759−8768.
|
|
Liu W, Anguelov D, Erhan D, et al. 2016. SSD: single shot MultiBox detector//European conference on computer vision. Cham: Springer, 21−37.
|
|
Misra D. 2019. Mish: a self regularized non-monotonic activation function. arXiv: 1908.08681.
|
|
Osco L P, dos Santos de Arruda M, Marcato J Jr, et al. A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160, 97- 106.
doi: 10.1016/j.isprsjprs.2019.12.010
|
|
Pan X R, Ge C J, Lu R, et al. 2021. On the integration of self-attention and convolution. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 815−825.
|
|
Redmon J, Divvala S, Girshick R, et al. 2016. You only look once: unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779−788.
|
|
Redmon J, Farhadi A. 2017. YOLO9000: better, faster, stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7263−7271.
|
|
Redmon J, Farhadi A. 2018. YOLOv3: an incremental improvement. arXiv: 1804.02767.
|
|
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
|
Tan M X, Pang R M, Le Q V. 2020. EfficientDet: scalable and efficient object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10781−10790.
|
|
Tian Z, Shen C H, Chen H, et al. 2019. FCOS: fully convolutional one-stage object detection. arxiv: 1904.01355.
|
|
Wang C S, Wang Q, Wu H R, et al. Low-altitude remote sensing opium poppy image detection based on modified YOLOv3. Remote Sensing, 2021, 13 (11): 2130.
doi: 10.3390/rs13112130
|
|
Wang C Y, Liao H Y, Wu Y H, et al. 2020. CSPNet: a new backbone that can enhance learning capability of CNN. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 390−391.
|
|
Woo S, Park J, Lee J Y, et al. 2018. CBAM: convolutional block attention module//European conference on computer vision. Cham: Springer, 3−19.
|
|
Zhang J, He L, Karkee M, et al. Branch detection for apple trees trained in fruiting wall architecture using depth features and regions-convolutional neural network (R-CNN). Computers and Electronics in Agriculture, 2018, 155, 386- 393.
doi: 10.1016/j.compag.2018.10.029
|