欢迎访问林业科学,今天是

林业科学 ›› 2024, Vol. 60 ›› Issue (9): 111-123.doi: 10.11707/j.1001-7488.LYKX20230041

• • 上一篇    下一篇

模型假设对基于模型的森林蓄积量估算的影响

齐元浩1,2,侯正阳1,2,*,刘太训3,徐晴4   

  1. 1. 北京林业大学森林培育与保护教育部重点实验室 北京 100083
    2. 国家林业和草原局黑龙江三江平原沼泽草甸生态系统定位观测研究站 双鸭山 518000
    3. 中交天津航道局有限公司 天津 300461
    4. 国际竹藤中心 国家林业和草原局/北京竹藤科学与技术重点 开放实验室 北京 100102
  • 收稿日期:2023-02-05 出版日期:2024-09-25 发布日期:2024-10-08
  • 通讯作者: 侯正阳
  • 基金资助:
    雄安新区科技创新专项“白洋淀生态固碳能力评估与调控”(2022XACX1000);国家社会科学基金项目“森林生态系统碳汇监测核算体系构建与评价研究”(22BTJ005)。

Effects of Modeling Assumptions on the Estimation of Stem Volume with Model-Based Inference

Yuanhao Qi1,2,Zhengyang Hou1,2,*,Taixun Liu3,Qing Xu4   

  1. 1. Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University Beijing 100083
    2. Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration Shuangyashan 518000
    3. CCCC Tianjin Dredging Co., Ltd. Tianjin 300461
    4. International Center for Bamboo and Rattan Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology Beijing 100102
  • Received:2023-02-05 Online:2024-09-25 Published:2024-10-08
  • Contact: Zhengyang Hou

摘要:

目的: 1) 评估模型的线性和非线性形式、模型残差假设对推断不确定性的效应;2) 比较2种总体均值的方差估计方法(自助法和解析法);3) 评估多种因素对推断不确定性的效应,构建基于遥感模型的统计推断经验法则用于指导实践。方法: 应用基于模型的统计推断方法,以森林蓄积量估算为例,基于非洲稀树草原的薪材材积实测样地数据和Landsat 8遥感辅助数据,使用二阶抽样从总体中选择160块样地形成样本,在不同模型假设下进行总体参数推断,量化分析参数模型假设对估计量不确定性的效应,并辅以置信椭圆等诊断方法确保分析的有效性。结果: 1) 不同模型假设下的总体均值估计值$ {\hat{\mu }}_{\mathrm{m}\mathrm{b}} $为7.159~7.331 m3·hm?2,解析方差估计值$ {\widehat{\mathrm{V}\mathrm{a}\mathrm{r}}(\hat{\mu }}_{\mathrm{m}\mathrm{b}}) $为0.147~0.221,抽样精度为93.59%~96.64%,总体均值的经验方差估计值$ {\widehat{\mathrm{V}\mathrm{a}\mathrm{r}}(\hat{\mu }}_{\mathrm{b}\mathrm{o}\mathrm{o}\mathrm{t}} )$为0.143~0.237。模型假设会影响模型参数估计,进而影响推断精度$ {\widehat{\mathrm{V}\mathrm{a}\mathrm{r}}(\hat{\mu }}_{\mathrm{m}\mathrm{b}}) $。自助法是检验总体参数解析估计量无偏性的有效方法。2) 基于设计的统计推断方法得出的总体均值估计值$ {\hat{\mu }}_{\mathrm{d}\mathrm{b}} $为6.774 m3·hm?2,其方差估计值$ {\widehat{\mathrm{V}\mathrm{a}\mathrm{r}}(\hat{\mu }}_{\mathrm{d}\mathrm{b}} )$为0.965,抽样精度为85.50%。既定条件下,相比基于设计的统计推断,基于模型的统计推断能够有效将推断精度提升77.10%~84.77%,对抽样精度的提升为9.46%~13.03%。结论: 基于模型的统计推断在小样本推断中具有更高的推断精度和抽样精度,有助于实现高精度、低样本量、短周期的森林资源调查目标,但建模过程中的不确定性会影响推断精度,其中残差变异性对推断不确定性的影响最大。忽略方差异性和空间自相关效应在同方差假设下进行总体参数推断,会低估$ {\widehat{\mathrm{V}\mathrm{a}\mathrm{r}}(\hat{\mu }}_{\mathrm{m}\mathrm{b}}) $,在考虑方差异性的同时应进一步检验空间自相关性并使用相应的权函数和自相关函数模拟残差变异性。

关键词: 森林资源遥感调查, 基于模型的统计推断, 回归模型, 方差估计

Abstract:

Objective: 1) Evaluate the effects of linear and nonlinear model forms of the model, as well as residual assumptions on inferential uncertainty. 2) Compare two methods of estimating variance of the population mean-bootstrap and analytical method. 3) Assess the effects of multiple factors on inferential uncertainty, and construct empirical rules of statistical inference based on remote sensing models to guide practice. Method: 160 sample plots were selected from the population using a two-stage sampling design. The variable of interest was denoted by forest volume as an example. Under the model-based inference, based on the measured sample plots of firewood volume in African savannahs and Landsat 8 remote sensing auxiliary data, the population parameters were estimated under different modeling assumptions, which aimed to quantitatively analyze the effects of analytical parameter model assumptions on estimating uncertainty and using diagnostic methods such as confidence ellipses to ensure the validity of the analysis. Result: 1) Under the different model assumptions, the population mean estimates $ {\hat{\mu }}_{\mathrm{m}\mathrm{b}} $ ranged from 7.159 to 7.331 m3·hm?2. Analytical variance of the population mean estimates $ {\widehat{\mathrm{V}\mathrm{a}\mathrm{r}}(\hat{\mu }}_{\mathrm{m}\mathrm{b}}) $ ranged from 0.147 to 0.221. The sampling precision ranged from 93.59% to 96.64%. Empirical variance of the population mean estimates $ {\widehat{\mathrm{V}\mathrm{a}\mathrm{r}}(\hat{\mu }}_{\mathrm{b}\mathrm{o}\mathrm{o}\mathrm{t}}) $ ranged from 0.143 to 0.237. Model assumptions will affect inferential the estimation of model parameters, which will ultimately affect inferential precision $ {\widehat{\mathrm{V}\mathrm{a}\mathrm{r}}(\hat{\mu }}_{\mathrm{m}\mathrm{b}} )$. The bootstrap method is an effective method for testing the unbiasedness of the analytical estimate of population parameters; 2) Under design-based inference, the estimated mean $ {\hat{\mu }}_{\mathrm{d}\mathrm{b}} $ was 6.774 m3·hm?2 with a variance $ {\widehat{\mathrm{V}\mathrm{a}\mathrm{r}}(\hat{\mu }}_{\mathrm{d}\mathrm{b}}) $ of 0.965, the sampling precision is 85.50%. Under established conditions, compared with design-based inference, model-based inference effectively increased the inferential precision by 77.10%-84.77% and improved the sampling precision between 9.46%-13.03%. Conclusion: Model-based inference has higher inferential precision and sampling precision in small sample inference, which is conducive to achieving the goal of high-precision, small-sample size and short-period forest inventory, but the uncertainty in the modeling process will affect inferential precision, among which the residual variability has the greatest influence on the inferential uncertainty. Ignoring spatial autocorrelation to infer population parameters under homogeneous variance assumptions will underestimation of $ {\widehat{\mathrm{V}\mathrm{a}\mathrm{r}}(\hat{\mu }}_{\mathrm{m}\mathrm{b}} )$. Therefore, it is important to account for the spatial autocorrelation apart from taking the heteroscedasticity into the estimation of model parameters using appropriate variance and correlation functions.

Key words: remote sensing-assisted forest inventory, model-based inference, regression model, variance estimation

中图分类号: