林业科学 ›› 2024, Vol. 60 ›› Issue (9): 18-32.doi: 10.11707/j.1001-7488.LYKX20230482
收稿日期:
2023-10-12
出版日期:
2024-09-25
发布日期:
2024-10-08
通讯作者:
许宇星
E-mail:wsxyx1987@163.com
基金资助:
Wankuan Zhu1,2,Zhichao Wang1,Apeng Du1,Yuxing Xu1,*()
Received:
2023-10-12
Online:
2024-09-25
Published:
2024-10-08
Contact:
Yuxing Xu
E-mail:wsxyx1987@163.com
摘要:
目的: 量化桉树人工林生态系统的碳水通量和组分并揭示其受环境生物因子的调控作用,为提高人工林碳汇评估准确性及深入认识气候变化背景下环境生物因子对人工林碳循环过程的影响提供依据。方法: 在雷州半岛北部,采用涡度相关法(EC)测定桉树人工林碳水通量,并同步监测空气温度(Tair)、饱和水汽压差(VPD)、光合光量子通量密度(PPFD)、土壤温度(Tsoil)、土壤湿度(SM)、降水量(Pre)和归一化植被指数(NDVI)等环境生物因子,分析碳水通量和组分的时间变化及其与环境生物因子的关系。结果: 桉树人工林生态系统总初级生产力(GPP)年均值为2 907.87 g·m?2a?1、生态系统呼吸(RE)年均值为1 509.77 g·m?2a?1、净生态系统碳交换(NEE)年均值为?1 398.83 g·m?2a?1、生态系统蒸散(ET)年均值为1 069.25 mm,表现为碳汇。GPP、RE、NEE、ET昼夜变化呈非对称单峰趋势,峰值和日均值的绝对值均表现为雨季高于旱季。雨季的GPP、RE、ET累积值高于旱季,NEE累积值在旱季和雨季无明显差异。日间NEE变化的主要影响因子为PPFD,当VPD≥15 hPa时NEE积累受到抑制,气温在中等水平(20 ℃<Tair< 27 ℃)时净碳吸收能力最强。夜间NEE变化主要受Tair影响,SM会影响NEE对Tair响应的敏感性。水分利用效率(WUE)在旱季(3.85 g·kg?1)高于雨季(2.61 g·kg?1),年均值为3.22 g·kg?1,季节差异主要由ET主导,与Tair、VPD、PPFD存在显著负相关(P<0.05)。结论: 桉树人工林生态系统在旱季、雨季和全年均表现为碳汇,其碳汇状态和强度由GPP主导。NEE变化主要受PPFD调控,高VPD会抑制生态系统净碳吸收,中等水平温度时生态系统净碳吸收能力最强,SM会影响夜间NEE对Tair响应的敏感性。桉树人工林WUE旱季高于雨季,季节差异主要由ET主导,同时受到Tair、VPD、PPFD的共同影响。
中图分类号:
竹万宽,王志超,杜阿朋,许宇星. 广东湛江桉树人工林碳水通量季节格局及其环境生物控制[J]. 林业科学, 2024, 60(9): 18-32.
Wankuan Zhu,Zhichao Wang,Apeng Du,Yuxing Xu. Seasonal Patterns of Carbon and Water Fluxes and Their Environmental Biological Control in the Eucalyptus Plantation in Zhanjiang of Guangdong Province[J]. Scientia Silvae Sinicae, 2024, 60(9): 18-32.
表1
主要缩略语"
缩写 Abbreviation | 参数全称 Full name of parameters | 单位 Unit |
GPP | 生态系统总初级生产力 Gross primary productivity | g·m?2s?1 |
RE | 生态系统呼吸 Ecosystem respiration | g·m?2s?1 |
NEE | 净生态系统碳交换 Net ecosystem carbon exchange | g·m?2s?1 |
ET | 蒸散 Evapotranspiration | mm |
WUE | 水分利用效率 Water use efficiency | g·kg?1 |
Tr | 蒸腾 Transpiration | mm |
E | 蒸发 Evaporation | mm |
H | 显热通量 Sensible heat flux | W·m?2 |
LE | 潜热通量 Latent heat flux | W·m?2 |
Rn | 净辐射 Net radiation | W·m?2 |
G | 土壤热通量 Soil heat flux | W·m?2 |
PPFD | 光合光量子通量密度 Photosynthetic photon flux density | μmol·m?2s?1 |
NDVI | 归一化植被指数 Normalized difference vegetation index | — |
Tair | 空气温度 Air temperature | ℃ |
Tsoil | 土壤温度 Soil temperature | ℃ |
SM | 土壤湿度 Soil moisture | m3·m?3 |
VPD | 饱和水汽压差 Vapour pressure deficit | hPa |
Pre | 降水量 Precipitation | mm |
表2
环境因子季节变化①"
环境因子 Environmental factors | 2018—2019 旱季 | 2019 雨季 | 2019—2020 旱季 | 2020 雨季 | 2020—2021 旱季 | 2021 雨季 | 2021—2022 旱季 | 2022 雨季 |
Dry season | Rainy season | Dry season | Rainy season | Dry season | Rainy season | Dry season | Rainy season | |
Tair/℃ | 21.20±4.11 | 27.73±2.16 | 20.64±3..01 | 28.25±2.23 | 20.32±4.34 | 28.27±2.36 | 19.34±4.18 | 27.28±2.53 |
Tair, max/℃ | 24.56±4.48 | 31.67±2.74 | 24.84±3.05 | 32.62±2.54 | 24.72±3.92 | 32.62±2.38 | 23.85±4.35 | 31.46±2.70 |
Tair, min/℃ | 18.87±4.36 | 24.98±2.00 | 17.42±3.56 | 25.12±2.22 | 17.09±5.04 | 25.07±2.44 | 16.00±4.28 | 24.29±2.59 |
Tsoil/℃ | 21.54±2.48 | 26.76±1.13 | 20.95±1.64 | 26.63±1.43 | 20.38±2.69 | 26.81±1.23 | 19.99±2.21 | 26.00±1.51 |
SM/(m3·m?3) | 0.16±0.03 | 0.20±0.03 | 0.14±0.02 | 0.19±0.04 | 0.15±0.03 | 0.17±0.04 | 0.15±0.03 | 0.21±0.03 |
PPFD/(mol·m?2d?1) | 23.02±9.74 | 34.92±12.28 | 24.69±9.67 | 36.31±11.14 | 27.22±10.13 | 37.49±12.27 | 27.35±13.22 | 38.48±14.04 |
VPD/hPa | 2.99±3.13 | 5.22±5.19 | 4.64±3.91 | 5.92±5.96 | 3.89±3.39 | 5.02±4.00 | 4.08±3.73 | 7.26±5.93 |
表4
光响应曲线的拟合参数①"
环境因子范围 Range of environmental factors | α/(μmol·μmol?1) | Amax /(μmol·m?2s?1) | REday/(μmol·m?2s?1) | R2 | RMSE |
VPD≤4 hPa | 0.038±0.001 | 47.640±1.605 | 3.126±0.137 | 0.998 | 0.058 |
4 hPa<VPD<15 hPa | 0.037±0.001 | 45.296±0.604 | 2.723±0.144 | 0.999 | 0.043 |
VPD≥15 hPa | 0.021±0.003 | 45.058±3.697 | 0.807±0.979 | 0.983 | 0.128 |
Tair≤20 ℃ | 0.043±0.002 | 30.833±0.782 | 2.103±0.229 | 0.995 | 0.099 |
20 ℃<Tair<27 ℃ | 0.043±0.002 | 41.982±0.974 | 3.803±0.262 | 0.997 | 0.089 |
Tair≥27 ℃ | 0.047±0.002 | 41.846±0.866 | 4.604±0.375 | 0.996 | 0.090 |
SM≤0.14 | 0.044±0.002 | 36.041±0.567 | 2.887±0.313 | 0.995 | 0.088 |
0.14<SM<0.21 | 0.046±0.002 | 39.147±0.600 | 3.724±0.356 | 0.995 | 0.093 |
SM≥0.21 | 0.046±0.003 | 44.629±1.133 | 5.022±0.627 | 0.988 | 0.143 |
表6
月尺度碳水通量与环境生物因子的关系①"
环境生物因子 Environmental biological factors | 相关系数 Correlation coefficient | 方差膨胀 因子VIF | 变量重要 值VIP | 标准化回归系数 Standard regression coefficient | ||||||||
GPP | NEE | RE | ET | WUE | GPP | NEE | RE | ET | WUE | |||
Tair | 0.81** | ?0.03 | 0.82** | 0.82** | ?0.65** | 42.56 | 1.07 | 0.30 | ?0.27 | 0.18 | 0.27 | ?0.22 |
Tsoil | 0.75** | 0.10 | 0.82** | 0.82** | ?0.70** | 31.84 | 1.09 | ?0.20 | 0.71 | 0.20 | 0.36 | ?0.75 |
SM | 0.50** | 0.23 | 0.64** | 0.52** | ?0.38** | 2.55 | 0.88 | 0.24 | 0.08 | 0.30 | 0.17 | 0.03 |
VPD | 0.35* | 0.12 | 0.42** | 0.47** | ?0.52** | 3.20 | 0.83 | ?0.37 | 0.63 | ?0.03 | 0.05 | ?0.45 |
PPFD | 0.85** | ?0.16 | 0.78** | 0.76** | ?0.53** | 11.92 | 1.12 | 0.91 | ?1.35 | 0.21 | 0.11 | 0.57 |
NDVI | 0.78** | ?0.09 | 0.73** | 0.66** | ?0.39** | 3.64 | 1.02 | 0.14 | 0.21 | 0.20 | 0.09 | 0.05 |
Pre | 0.38** | 0.36* | 0.57** | 0.47** | ?0.43** | 2.62 | 0.96 | ?0.26 | 0.40 | ?0.08 | ?0.15 | ?0.05 |
表7
我国热带亚热带主要类型森林生态系统的碳交换对比"
站点位置 Station location | 植被类型 Vegetation types | 时间跨度 Duration | 日均值范围 Daily average range/(μmol·m?2s?1) | GPP/ (g·m?2a?1) | RE/ (g·m?2a?1) | NEE/ (g·m?2a?1) | 数据来源 Data source |
湖南会同 Huitong, Hunan | 杉木人工林 Cunninghamia lanceolata plantation | 2018.01—2018.12 | ?17.73~6.14 | ?1 213.60 | 958.30 | ?255.30 | |
江西吉安 Ji’an, Jiangxi | 人工针叶林 Coniferous plantation | 2003.01—2005.12 | ?15.23~6.82 | ?1 754.50 | 1 137.10 | ?617.40 | |
江苏宿迁 Suqian, Jiangsu | 杨树人工林 Poplar plantation | 2018.01—2018.12 | ?18.18~5.68 | ?1 231.00 | 636.60 | ?594.40 | |
浙江安吉 Anji, Zhejiang | 毛竹林 Phyllostachys edulis forest | 2011.01—2014.12 | ?15.68~5.00 | ?1 526.35 | 939.50 | ?586.85 | |
浙江临安 Lin’an, Zhejiang | 常绿阔叶混交林 Evergreen broad-leaved mixed forest | 2013.07—2014.06 | ?22.27~7.91 | ?1 669.23 | 931.05 | ?738.18 | |
海南儋州 Danzhou, Hainan | 橡胶树人工林 Rubber plantation | 2010.01—2010.12 | ?23.91~4.09 | ?3 143.93 | 2 010.48 | ?1 133.45 | |
广东湛江 Zhanjiang, Guangdong | 桉树人工林 Eucalyptus plantation | 2018.11—2021.12 | ?22.94~6.11 | ?2 907.87 | 1 509.77 | ?1 398.83 | 本研究This paper |
表8
我国热带亚热带主要类型森林生态系统的WUE对比"
站点位置 Station location | 植被类型 Vegetation types | 林龄Forest age/a | WUE/(g·kg?1) | 数据来源 Data source |
湖南会同 Huitong, Hunan | 杉木人工林Cunninghamia lanceolata plantation | 20 | 2.17 | |
江苏洪泗 Hongsi, Jiangsu | 杨树人工林Poplar plantation | 10 | 2.20 | |
江西泰和 Taihe, Jiangxi | 马尾松林Pinus massoniana forest、湿地松林 Pinus elliottii forest、杉木林Cunninghamia lanceolata forest | 18~23 | 2.10~2.90 | |
广东鼎湖山 Dinghushan, Guangdong | 针阔叶混交林 Mixed conifer-broadleaf forest | 2.85 | ||
广东鼎湖山 Dinghushan, Guangdong | 常绿阔叶林 Evergreen broad-leaved forest | >400 | 1.83 | |
云南哀牢山 Ailaoshan, Yunnan | 常绿阔叶林 Evergreen broad-leaved forest | >300 | 2.48 | |
云南勐腊 Mengla, Yunnan | 热带雨林 Tropical rain forest | 3.16 | ||
海南儋州 Danzhou, Hainan | 橡胶树人工林Rubber plantation | 4.16 | ||
广东湛江 Zhanjiang, Guangdong | 桉树人工林Eucalyptus plantation | 11~15 | 3.22 | 本研究This paper |
白 鹏, 蔡常鑫. 1982—2019年中国陆地蒸散发变化的归因分析. 地理学报, 2023, 78 (11): 2750- 2762.
doi: 10.11821/dlxb202311007 |
|
Bai P, Cai C X. Attribution analysis of changes in terrestrial evapotranspiration in China during 1982—2019. Acta Geographica Sinica, 2023, 78 (11): 2750- 2762.
doi: 10.11821/dlxb202311007 |
|
陈德祥. 2010. 尖峰岭热带山地雨林碳交换的动态特征和影响因素研究. 北京: 中国林业科学研究院. | |
Chen D X. 2010. Dynamics and controls of carbon exchange of a tropical montane rain forest at Jianfengling, China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
陈晓峰. 2016. 浙江安吉毛竹林生态系统碳通量及响应机制研究. 杭州: 浙江农林大学. | |
Chen X F. 2016. Carbon fluxes and their response mechanisms in a phyllostachys edulis ecosystems in Anji County. Hangzhou: Zhejiang A & F University. [in Chinese] | |
耿思文. 2020. 海南儋州橡胶林生态系统水量平衡研究. 海口: 海南大学. | |
Geng S W. 2020. Water balance process analysis of rubber plantation ecosystem in Danzhou, Hainan Island. Haikou: Hainan University. [in Chinese] | |
郭沈沈, 吴志祥, 刘文杰, 等. 热带北缘地区橡胶林水分利用效率的季节差异及归因分析. 热带生物学报, 2023, 14 (4): 424- 432. | |
Guo S S, Wu Z X, Liu W J, et al. Seasonal differences and attribution analysis of water use efficiency in rubber plantations at the north fringe of the tropics. Journal of Tropical Biology, 2023, 14 (4): 424- 432. | |
国家林业和草原局. 2019. 中国森林资源清查报告(2014—2018). 北京: 中国林业出版社. | |
National Forestry and Grassland Administration. 2019. China forest resources report (2014–2018). Beijing: China Forestry Publishing House. [in Chinese] | |
黄健强, 邓永红, 曾小平, 等. 南亚热带针阔叶混交林生态系统水分利用效率. 生态学杂志, 2020, 39 (8): 2538- 2545. | |
Huang J Q, Deng Y H, Zeng X P, et al. Water-use efficiency in a mixed conifer-broadleaf forest ecosystem in lower subtropical China. Chinese Journal of Ecology, 2020, 39 (8): 2538- 2545. | |
李 奇, 朱建华, 冯 源, 等. 中国主要人工林碳储量与固碳能力. 西北林学院学报, 2016, 31 (4): 1- 6.
doi: 10.3969/j.issn.1001-7461.2016.04.01 |
|
Li Q, Zhu J H, Feng Y, et al. Carbon stocks and carbon sequestration capacity of the main plantations in China. Journal of Northwest Forestry University, 2016, 31 (4): 1- 6.
doi: 10.3969/j.issn.1001-7461.2016.04.01 |
|
李润东, 范雅倩, 冯 沛, 等. 北京松山天然落叶阔叶林生态系统净碳交换特征及其影响因子. 应用生态学报, 2020, 31 (11): 3621- 3630. | |
Li R D, Fan Y Q, Feng P, et al. Net ecosystem carbon exchange and its affecting factors in a deciduous broad-leaved forest in Songshan, Beijing, China. Chinese Journal of Applied Ecology, 2020, 31 (11): 3621- 3630. | |
李鑫豪, 张德怀, 张赵森, 等. 北京密云油松人工林碳通量组分季节变化及其对环境因子的响应. 林业科学, 2023, 59 (7): 35- 44.
doi: 10.11707/j.1001-7488.LYKX20220865 |
|
Li X H, Zhang D H, Zhang Z S, et al. Seasonal variations in carbon fluxes and their responses to environmental factors in a Pinus tabuliformis plantation ecosystem in Miyun, Beijing. Scientia Silvae Sinicae, 2023, 59 (7): 35- 44.
doi: 10.11707/j.1001-7488.LYKX20220865 |
|
米 娜, 温学发, 蔡 福, 等. 季节性干旱对千烟洲人工林水分利用效率的影响. 林业科学, 2014, 50 (12): 24- 31. | |
Mi N, Wen X F, Cai F, et al. Effects of seasonal drought on the water use efficiency of Qianyanzhou plantation. Scientia Silvae Sinicae, 2014, 50 (12): 24- 31. | |
牛晓栋. 2020. 暖温带锐齿栎林生态系统碳水通量与水分利用效率研究. 北京: 中国林业科学研究院. | |
Niu X D. 2020. A study on ecosystem carbon/water fluxes and water use efficiency in a warm-temperate oak (Quercus aliena var. acuteserrata) forest. Beijing: Chinese Academy of Forestry. [in Chinese] | |
牛晓栋, 江 洪, 张金梦, 等. 浙江天目山老龄森林生态系统CO2通量特征. 应用生态学报, 2016, 27 (1): 1- 8. | |
Niu X D, Jiang H, Zhang J M, et al. Characteristics of CO2 flux in an old growth mixed forest in Tianmu Mountain, Zhejiang, China. Chinese Journal of Applied Ecology, 2016, 27 (1): 1- 8. | |
彭 丽. 2021. 会同杉木人工林碳水通量动态变化及分配特征. 长沙: 中南林业科技大学. | |
Peng L. 2021. Flux changes and distribution characteristics of carbon and water in Chinese fir plantation in Huitong. Changsha: Central South University of Forestry and Technology. [in Chinese] | |
祁述雄. 2002. 中国桉树. 北京: 中国林业出版社. | |
Qi S X. 2002. Eucalyptus in China. Beijing: China Forestry Publishing House. [in Chinese] | |
齐建东, 谭新新. 长白山红松阔叶林的净碳交换变化及基于时间卷积神经网络的模拟. 林业科学, 2022, 58 (2): 1- 12. | |
Qi J D, Tan X X. Net carbon exchange of the forest of Korean pine and broad leaved forest trees in Changbai Mountain and its simulation based on temporal convolutional network. Scientia Silvae Sinicae, 2022, 58 (2): 1- 12. | |
沈文清. 2006. 江西千烟洲人工针叶林生态系统碳收支研究. 北京: 北京林业大学. | |
Shen W Q. 2006. Carbon budgets of coniferous plantations in Qianyanzhou experimental station, Jiangxi, China. Beijing: Beijing Forestry University. [in Chinese] | |
王 新, 周 宇, 高 翔, 等. 四种Ci/Ca模型在FVS法分离人工林生态系统蒸散发过程中的适用性评价与优化. 中国农业气象, 2023, 44 (4): 317- 326.
doi: 10.3969/j.issn.1000-6362.2023.04.006 |
|
Wang X, Zhou Y, Gao X, et al. Evaluation and optimization of the applicability of four Ci/Ca models in the FVS method for partitioning the evapotranspiration of plantation ecosystems. Chinese Journal of Agrometeorology, 2023, 44 (4): 317- 326.
doi: 10.3969/j.issn.1000-6362.2023.04.006 |
|
吴志祥, 陶忠良, 兰国玉, 等. 海南岛橡胶林生态系统碳通量及其影响因子研究. 热带作物学报, 2014, 35 (11): 2099- 2108.
doi: 10.3969/j.issn.1000-2561.2014.11.001 |
|
Wu Z X, Tao Z L, Lan G Y, et al. The net ecosystem carbon exchange and its environmental factors in a tropical rubber plantation ecosystem in Hainan Island. Chinese Journal of Tropical Crops, 2014, 35 (11): 2099- 2108.
doi: 10.3969/j.issn.1000-2561.2014.11.001 |
|
张一平, 沙丽清, 于贵瑞, 等. 热带季节雨林碳通量年变化特征及影响因子初探. 中国科学, 2006, 36 (S1): 139- 152. | |
Zhang Y P, Sha L Q, Yu G R, et al. Annual variation characteristics of carbon flux in tropical seasonal rain forest and its influencing factors. Scientia Sinica (Terrae), 2006, 36 (S1): 139- 152. | |
张 悦. 2019. 洪泽湖地区杨树人工林碳水通量、水分利用效率动态变化及影响因子研究. 南京: 南京林业大学. | |
Zhang Y. 2019. Study on dynamic change and influencing factors of carbon water flux and water use efficiency over a poplar plantation in Lake Hongze basin. Nanjing: Nanjing Forestry University. [in Chinese] | |
赵梅芳. 2008. 基于3-PG机理模型的杉木林碳固定及蒸散量模拟研究. 长沙: 中南林业科技大学. | |
Zhao M F. 2008. Simulating Chinese fir plantation carbon storage and evapotranspiration using the 3-PG model. Changsha: Central South University of Forestry and Technology. [in Chinese] | |
赵乃立. 2017. 基于碳水通量观测的湿地水分利用效率研究. 郑州: 华北水利水电大学. | |
Zhao N L. 2017. Study of water use efficiency of wetland based on carbon flux and water vapor flux observation. Zhengzhou: North China University of Water Resources and Electric Power. [in Chinese] | |
赵仲辉, 张利平, 康文星, 等. 湖南会同杉木人工林生态系统CO2通量特征. 林业科学, 2011, 47 (11): 6- 12.
doi: 10.11707/j.1001-7488.20111102 |
|
Zhao Z H, Zhang L P, Kang W X, et al. Characteristics of CO2 flux in a Chinese fir plantation ecosystem in Huitong County, Hunan Province. Scientia Silvae Sinicae, 2011, 47 (11): 6- 12.
doi: 10.11707/j.1001-7488.20111102 |
|
朱美玲. 2016. 海南岛橡胶树、桉树人工林生态系统碳氮储量研究. 海口: 海南大学. | |
Zhu M L. 2016. Research of carbon and nitrogen storage of rubber and eucalyptus plantations in Hainan Island. Haikou: Hainan University. [in Chinese] | |
Baldocchi D, Chu H S, Reichstein M. Inter-annual variability of net and gross ecosystem carbon fluxes: a review. Agricultural and Forest Meteorology, 2018, 249, 520- 533.
doi: 10.1016/j.agrformet.2017.05.015 |
|
Barr A G, Richardson A D, Hollinger D Y, et al. Use of change-point detection for friction-velocity threshold evaluation in eddy-covariance studies. Agricultural and Forest Meteorology, 2013, 171/172, 31- 45.
doi: 10.1016/j.agrformet.2012.11.023 |
|
Canadell J G, Raupach M R. Managing forests for climate change mitigation. Science, 2008, 320 (5882): 1456- 1457.
doi: 10.1126/science.1155458 |
|
Chen X Y, Rubin Y, Ma S Y, et al. Observations and stochastic modeling of soil moisture control on evapotranspiration in a Californian oak savanna. Water Resources Research, 2008, 44 (8): 141- 153. | |
Chen Z, Yu G R, Wang Q F. Effects of climate and forest age on the ecosystem carbon exchange of afforestation. Journal of Forestry Research, 2020, 31 (2): 365- 374.
doi: 10.1007/s11676-019-00946-5 |
|
Dalal R C, Allen D E, Livesley S J, et al. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant and Soil, 2008, 309 (1/2): 43- 76. | |
Diaz-Balteiro L, Rodriguez L C E. Optimal rotations on eucalyptus plantations including carbon sequestration: a comparison of results in Brazil and Spain. Forest Ecology and Management, 2006, 229 (1/3): 247- 258. | |
Drake P L, Mendham D S, Ogden G N. Plant carbon pools and fluxes in coppice regrowth of Eucalyptus globulus. Forest Ecology and Management, 2013, 306, 161- 170.
doi: 10.1016/j.foreco.2013.06.034 |
|
Eamus D, Cleverly J, Boulain N, et al. Carbon and water fluxes in an arid-zone Acacia savanna woodland: an analyses of seasonal patterns and responses to rainfall events. Agricultural and Forest Meteorology, 2013, 182/183, 225- 238.
doi: 10.1016/j.agrformet.2013.04.020 |
|
Ensminger I, Busch F, Huner N P A. Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiologia Plantarum, 2006, 126 (1): 28- 44.
doi: 10.1111/j.1399-3054.2006.00627.x |
|
Fang Q Q, Wang G Q, Xue B L, et al. 2018. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem? Science of the Total Environment, 635: 1255-1266. | |
FAO. 2020. Global forest resources assessment 2020. Food Agriculture Organization of the United Nations. | |
Green J K, Seneviratne S I, Berg A M, et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 2019, 565 (7740): 476- 479.
doi: 10.1038/s41586-018-0848-x |
|
Guo L, Dai J H, Ranjitkar S, et al. 2014. Chilling and heat requirements for flowering in temperate fruit trees. International Journal of Biometeorology. 58: 1195–1206. | |
Huang L, Liu J Y, Shao Q Q, et al. Carbon sequestration by forestation across China: past, present, and future. Renewable and Sustainable Energy Reviews, 2012, 16 (2): 1291- 1299.
doi: 10.1016/j.rser.2011.10.004 |
|
Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002, 83 (1): 195- 213. | |
Huxman T E, Turnipseed A A, Sparks J P, et al. Temperature as a control over ecosystem CO2 fluxes in a high-elevation, subalpine forest. Oecologia, 2003, 134 (4): 537- 546.
doi: 10.1007/s00442-002-1131-1 |
|
Janssens I A, Freibauer A, Ciais P, et al. Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science, 2003, 300 (5625): 1538- 1542.
doi: 10.1126/science.1083592 |
|
Jia X, Zha T S, Gong J N, et al. Multi-scale dynamics and environmental controls on net ecosystem CO2 exchange over a temperate semiarid shrubland. Agricultural and Forest Meteorology, 2018, 259, 250- 259.
doi: 10.1016/j.agrformet.2018.05.009 |
|
Kaimal J C, Finnigan J J. 1994. Atmospheric boundary layer flows. New York: Oxford University Press. | |
Kang M C, Zhang Z Q, Noormets A, et al. Energy partitioning and surface resistance of a poplar plantation in northern China. Biogeosciences, 2015, 12 (14): 4245- 4259.
doi: 10.5194/bg-12-4245-2015 |
|
Kljun N, Calanca P, Rotach M W, et al. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geoscientific Model Development, 2015, 8 (11): 3695- 3713.
doi: 10.5194/gmd-8-3695-2015 |
|
Lal R. Forest soils and carbon sequestration. Forest Ecology and Management, 2005, 220 (1/3): 242- 258. | |
Li C J, Fu B J, Wang S, et al. Drivers and impacts of changes in China’s drylands. Nature Reviews Earth & Environment, 2021, 2 (12): 858- 873. | |
Li X Q, Ye D, Liang H W, et al. Effects of successive rotation regimes on carbon stocks in eucalyptus plantations in subtropical China measured over a full rotation. PLoS One, 2015, 10 (7): e132858. | |
Liu J G, Lai D Y F. Subtropical mangrove wetland is a stronger carbon dioxide sink in the dry than wet seasons. Agricultural and Forest Meteorology, 2019b, 278, 107644.
doi: 10.1016/j.agrformet.2019.107644 |
|
Liu P, Zha T S, Jia X, et al. 2019a, Different effects of spring and summer droughts on ecosystem carbon and water exchanges in a semiarid shrubland ecosystem in northwest China. Ecosystem, 22: 1869-1885. | |
Liu X D, Chen X Z, Li R H, et al. Water-use efficiency of an old-growth forest in lower subtropical China. Scientific Reports, 2017, 7 (1): 42761.
doi: 10.1038/srep42761 |
|
Lowry A L, Mcgowan H A, Gray M A. Multi-year carbon and water exchanges over contrasting ecosystems on a sub-tropical sand island. Agricultural and Forest Meteorology, 2021, 304/305, 108404.
doi: 10.1016/j.agrformet.2021.108404 |
|
Luedeling E, Kunz A, Blanke M. 2013. Identification of chilling and heat requirements of cherry trees-a statistical approach. International Journal of Biometeorology. 57: 679–689. | |
Mauder M, Foken T. 2004. Documentation and instruction manual of the eddy covariance software package TK3. http://www.bayceer. uni-bayreuth. de/mm/en/software/software/software_dl.php. 2012-04. | |
Moore C J. Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorology, 1986, 37 (1/2): 17- 35. | |
Nghiem N. Optimal rotation age for carbon sequestration and biodiversity conservation in Vietnam. Forest Policy and Economics, 2014, 38, 56- 64.
doi: 10.1016/j.forpol.2013.04.001 |
|
Ouyang Z T, Chen J Q, Becker R, et al. Disentangling the confounding effects of par and air temperature on net ecosystem exchange at multiple time scales. Ecological Complexity, 2014, 19, 46- 58.
doi: 10.1016/j.ecocom.2014.04.005 |
|
Payn T, Carnus J, Freer-Smith P, et al. Changes in planted forests and future global implications. Forest Ecology and Management, 2015, 352, 57- 67.
doi: 10.1016/j.foreco.2015.06.021 |
|
Piao S L, Wang X H, Wang K, et al. Interannual variation of terrestrial carbon cycle: issues and perspectives. Global Change Biology, 2019, 26 (1): 300- 318. | |
Ponton S, Flanagan L B, Alstad K P, et al. Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biology, 2006, 12 (2): 294- 310.
doi: 10.1111/j.1365-2486.2005.01103.x |
|
Reichstein M, Falge E, Baldocchi D, et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 2005, 11 (9): 1424- 1439.
doi: 10.1111/j.1365-2486.2005.001002.x |
|
Reichstein M, Tenhunen J D, Roupsard O, et al. 2002. Severe drought effects on ecosystem co2 and h2o fluxes at three mediterranean evergreen sites: revision of current hypotheses? Global Change Biology, 8(10): 999−1017. | |
Shrestha N. Detecting multicollinearity in regression analysis. American Journal of Applied Mathematics and Statistics, 2020, 8 (2): 39- 42.
doi: 10.12691/ajams-8-2-1 |
|
Song Q H, Fei X H, Zhang Y P, et al. Water use efficiency in a primary subtropical evergreen forest in southwest China. Scientific Reports, 2017, 7 (1): 43031.
doi: 10.1038/srep43031 |
|
Tan Z H, Zhang Y P, Deng X B, et al. Interannual and seasonal variability of water use efficiency in a tropical rainforest: results from a 9 year eddy flux time series. Journal of Geophysical Research: Atmospheres, 2015, 120 (2): 464- 479.
doi: 10.1002/2014JD022535 |
|
Turner J, Lambert M J. Nutrient cycling in age sequences of two eucalyptus plantation species. Forest Ecology and Management, 2008, 255 (5/6): 1701- 1712. | |
Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests. Nature, 2000, 404 (6780): 861- 865.
doi: 10.1038/35009084 |
|
Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 1980, 106 (447): 85- 100.
doi: 10.1002/qj.49710644707 |
|
Wen Y G, Ye D, Chen F, et al. The changes of understory plant diversity in continuous cropping system of eucalyptus plantations, south China. Journal of Forest Research, 2010, 15 (4): 252- 258.
doi: 10.1007/s10310-010-0179-8 |
|
Williams D G, Cable W, Hultine K, et al. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 2004, 125 (3/4): 241- 258. | |
Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 2002, 113 (1/4): 223- 243. | |
Wold, S. , 1995. PLS for multivariate linear modeling//van der Waterbeemd H. ed. Chemometric methods in molecular design: methods and principles in medicinal chemistry. Weinheim, Germany: Verlag-Chemie, 195–218. | |
Xu Y X, Du A P, Wang Z C, et al. Effects of different rotation periods of eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity. Forest Ecology and Management, 2020, 456, 117683.
doi: 10.1016/j.foreco.2019.117683 |
|
Yu G R, Song X, Wang Q F, et al. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist, 2008a, 177 (4): 927- 937.
doi: 10.1111/j.1469-8137.2007.02316.x |
|
Yu G R, Zhang L M, Sun X M, et al. Environmental controls over carbon exchange of three forest ecosystems in eastern China. Global Change Biology, 2008b, 14 (11): 2555- 2571.
doi: 10.1111/j.1365-2486.2008.01663.x |
|
Yuan W P, Liu S G, Yu G R, et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sensing of Environment, 2010, 114 (7): 1416- 1431.
doi: 10.1016/j.rse.2010.01.022 |
|
Zhang H, Guan D S, Song M W. Biomass and carbon storage of eucalyptus and acacia plantations in the pearl river delta, south China. Forest Ecology and Management, 2012, 277, 90- 97.
doi: 10.1016/j.foreco.2012.04.016 |
|
Zhang K, Ali A, Antonarakis A, et al. The sensitivity of north American terrestrial carbon fluxes to spatial and temporal variation in soil moisture: an analysis using radar‐derived estimates of root‐zone soil moisture. Journal of Geophysical Research: Biogeosciences, 2019, 124 (11): 3208- 3231.
doi: 10.1029/2018JG004589 |
|
Zhang L H, Chen Y N, Zhao R F, et al. Significance of temperature and soil water content on soil respiration in three desert ecosystems in northwest China. Journal of Arid Environments, 2010, 74 (10): 1200- 1211.
doi: 10.1016/j.jaridenv.2010.05.031 |
|
Zhang Y X, Wang X J. Geographical spatial distribution and productivity dynamic change of eucalyptus plantations in China. Scientific Reports, 2021, 11 (1): 19764.
doi: 10.1038/s41598-021-97089-7 |
|
Zhao J X, Feng H Z, Xu T R, et al. Physiological and environmental control on ecosystem water use efficiency in response to drought across the northern hemisphere. Science of the Total Environment, 2021, 758, 143599.
doi: 10.1016/j.scitotenv.2020.143599 |
|
Zhou S, Yu B F, Zhang Y, et al. Partitioning evapotranspiration based on the concept of underlying water use efficiency. Water Resources Research, 2016, 52 (2): 1160- 1175.
doi: 10.1002/2015WR017766 |
|
Zhou X G, Wen Y G, Goodale U M, et al. Optimal rotation length for carbon sequestration in eucalyptus plantations in subtropical China. New Forests, 2017, 48 (5): 609- 627.
doi: 10.1007/s11056-017-9588-2 |
|
Zhou Z Y, Zhang Z Q, Zha T G, et al. Predicting soil respiration using carbon stock in roots, litter and soil organic matter in forests of loess plateau in China. Soil Biology and Biochemistry, 2013, 57, 135- 143.
doi: 10.1016/j.soilbio.2012.08.010 |
|
Zhu S D, Song J J, Li R H, et al. 2013. Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests. Plant, Cell & Environment, 36(4): 879−891. |
[1] | 谢静,张峰,周泽圆,于海群,韩艺,杨春欣,蒋薇,刘进祖,刘博恩,刘鹤. 北京城市公园人工林生态系统水分利用效率的季节变化[J]. 林业科学, 2024, 60(9): 12-17. |
[2] | 管崇帆,高翔,李志鹏,胡晓创,胡美均,张劲松,孟平,蔡金峰,孙守家. 辽西地区樟子松人工林生产力和水分利用效率对气候变化的响应及预测[J]. 林业科学, 2024, 60(7): 28-39. |
[3] | 王妍,冯金玲,吴小慧,黄蓝明,吴娟,陈宇,杨志坚. 施肥对闽楠幼苗光合碳固定的影响[J]. 林业科学, 2022, 58(5): 40-52. |
[4] | 邢军超,张一南,石焱,李金鑫,李敏,申宛娜,王黎,赵嘉平. 腐烂病菌、溃疡病菌侵染早期新疆杨叶片组织光合响应特征的比较[J]. 林业科学, 2021, 57(9): 121-129. |
[5] | 曹宇,巢林,安宇宁,吴德东,张学利,李红,刘艳艳. 科尔沁沙地刺榆水力结构特征对土壤水分环境的响应[J]. 林业科学, 2021, 57(7): 32-42. |
[6] | 侯文军,邹明,李宝福,俞元春. 施用草甘膦对桉树人工林土壤理化性质的影响[J]. 林业科学, 2020, 56(8): 20-26. |
[7] | 竹万宽,许宇星,王志超,杜阿朋. 中国桉树人工林生物量估算系数及影响要素[J]. 林业科学, 2020, 56(5): 1-11. |
[8] | 高暝, 陈益存, 吴立文, 汪阳东. 山鸡椒水分及氮素利用效率性别特异性动态[J]. 林业科学, 2019, 55(4): 62-68. |
[9] | 邹杰, 丁建丽. 2000—2014年中亚地区主要植被类型水分利用效率特征[J]. 林业科学, 2019, 55(3): 175-182. |
[10] | 何春霞, 张劲松, 孟平, 胡心雨, 高峻. 太行山南麓3种常见灌木的水分利用特性[J]. 林业科学, 2018, 54(9): 137-146. |
[11] | 王琰, 刘勇, 李国雷, 胡嘉伟, 娄军山, 万芳芳. 容器类型及规格对油松容器苗底部渗灌耗水规律及苗木生长的影响[J]. 林业科学, 2016, 52(6): 10-17. |
[12] | 郎莹, 汪明. 春夏两季连翘光合作用的土壤水分阈值效应及生产力分级[J]. 林业科学, 2016, 52(2): 38-46. |
[13] | 闫晶, 罗云建, 郑德福, 王水城. 桉树生物量估算差异的源解析[J]. 林业科学, 2014, 50(2): 92-98. |
[14] | 米娜, 温学发, 蔡福, 王阳, 张玉书. 季节性干旱对千烟洲人工林水分利用效率的影响[J]. 林业科学, 2014, 50(12): 24-31. |
[15] | 高暝, 黄秦军, 丁昌俊, 苏晓华. 美洲黑杨及其杂种F1不同生长势无性系叶片δ13C和氮素利用效率[J]. 林业科学, 2013, 49(8): 51-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||