欢迎访问林业科学,今天是

林业科学 ›› 2023, Vol. 59 ›› Issue (2): 40-47.doi: 10.11707/j.1001-7488.LYKX20200897

•   • 上一篇    下一篇

群众杨幼苗叶光合特性与碳氮分配对CO2浓度和气温升高的响应

王卫锋1(),赵瑜琦1,高苗琴1,宗毓铮2,郝兴宇2   

  1. 1. 山西农业大学林学院 晋中 030801
    2. 山西农业大学农学院 晋中 030801
  • 收稿日期:2020-11-11 出版日期:2023-02-25 发布日期:2023-04-27
  • 基金资助:
    国家自然科学基金青年基金项目(31400527); 山西省应用基础研究项目(201701D221190); 山西农业大学青年拔尖创新人才支持计划(BJRC201602); 黄土高原特色作物优质高效生产省部共建协同创新中心基金项目(SBGJXTZX-27)

Leaf Photosynthesis and Carbon and Nitrogen Distribution of Populus×popularis‘35-44’ Young Cuttings in Response to Elevated CO2 Concentration and Temperature

Weifeng Wang1(),Yuqi Zhao1,Miaoqin Gao1,Yuzheng Zong2,Xingyu Hao2   

  1. 1. College of Forestry, Shanxi Agricultural University Jinzhong 030801
    2. College of Agriculture, Shanxi Agricultural University Jinzhong 030801
  • Received:2020-11-11 Online:2023-02-25 Published:2023-04-27

摘要:

目的: 研究杨树光合作用和碳氮分配对CO2浓度和温度升高的响应,探讨气候变化下杨树的生理生态适应机制,以期为我国北方杨树人工林生产力和生态效益的长期提升提供理论依据。方法: 以盆栽群众杨当年生扦插幼苗为试验材料,在开顶式生长室内模拟研究了空气CO2浓度和气温升高(分别比室外大气升高200 μmol mol?1和2 ℃)及其共同作用下的功能叶光合特性、叶解剖结构、器官间干物质和碳氮分配的响应,并探讨了苗期群众杨对CO2浓度和气温升高的生理生态响应。结果: 1) 在CO2浓度升高处理下,群众杨叶片气孔密度降低,蒸腾速率减弱,瞬时水分利用效率显著提高;光合潜力和氮利用效率增加,并通过叶肉组织增厚、叶和根碳氮比增加、比叶重增大以及根冠比增加等途径维持单位叶面积氮含量、瞬时光合特性和叶绿素荧光特性不变,而单位质量暗呼吸速率降低,并使单株总干质量和总碳量显著增加。2) 增温2 ℃下的群众杨叶气孔密度显著增加,但瞬时气体交换和荧光参数、光合特性变化不显著,株高和单株总氮量略低,器官间的干物质和碳氮分配变化亦不明显。3) 在同时提高CO2浓度和气温处理下,根碳氮比显著低于CO2浓度升高处理,而光合氮利用效率显著增加,但整体而言CO2浓度升高和增温并未表现出明显的协同效应。4) 在CO2浓度升高、增温以及同时提高CO2浓度和气温处理下,群众杨茎干物质比例均显著降低,茎碳氮比不变,根干物质比例和碳氮比响应比茎和叶更敏感。结论: 群众杨幼苗可通过调控叶片形态结构和增大根系碳分配维持叶片光合固碳能力,以适应空气CO2浓度升高导致的氮浓度降低;增温2 ℃对群众杨光合特性、植株生长和碳氮分配影响不明显; CO2浓度升高和增温之间没有明显的协同作用。

关键词: 二氧化碳浓度, 温度, 杨树, 光合特性, 碳氮分配

Abstract:

Objective: In this study, we investigated the response processes of leaf photosynthesis and carbon and nitrogen distribution of a poplar under elevated atmosphere CO2 concentration and temperature, and explored the ecophysiological acclimation mechanism of the poplar to global climate changes, which would provide theoretical basis for promoting the long-term productivity and ecological benefits of poplar plantations in northern China. Method: The potted annual cuttings of a hybrid poplar (Populus × popularis ‘35-44’) were subjected to elevated CO2 (+200 μmol·mol?1) and/or temperature (+2 ℃) in OTCs for 4 months, and the changes of leaf photosynthetic traits, anatomical and stomatal traits, drymass and carbon and nitrogen distribution among organs were investigated. The ecophysiological responses of P. × popularis ‘35-44’ seedlings to elevated CO2 concentration and temperature were discussed. Result: 1) Under elevated CO2 concentration conditions, leaf stomatal density decreased and transpiration rate decreased, resulting in an increase of instantaneous water use efficiency. Leaf photosynthetic capacity and nitrogen use efficiency significantly increased. Nitrogen content per unit leaf area, instantaneous photosynthetic characteristics, and chlorophyll fluorescence characteristics remained unchanged through thickening leaf mesophyll, increasing root shoot ratio, C∶N ratio in leaves and roots, and LMA. However, the dark respiration rate per drymass decreased, and whole-plant drymass and total carbon content significantly increased. 2) Under the elevated temperature condition by 2 ℃, leaf stomatal density significantly increased, but instantaneous gas exchanges, chlorophyll fluorescence parameters and photosynthetic traits did not change. Plant height and whole-plant nitrogen slightly decreased, but organ drymass, carbon and nitrogen distribution maintained unchanged. 3) Under the treatment of both elevated CO2 concentration and temperature, the carbon nitrogen ratio in roots was significantly lower than that of the treatment of increasing CO2 concentration, while the photosynthetic nitrogen utilization efficiency was significantly increased. However, the increase in CO2 concentration and temperature did not show an obvious synergistic effect. 4) CO2 concentration and/or temperature treatments all decreased the stem drymass distribution percentage, but the stem C∶N ratio remained unchanged. However the treatment significantly changed C:N ratio in leaves and roots. Conclusion: P. × popularis‘35-44’ young cuttings can maintain leaf photosynthetic carbon fixation capacity by regulating leaf morphology, anatomy and C:N, which might be important under the declined nitrogen concentration induced by long-term elevated CO2. Elevated temperature does not sharply change leaf photosynthetic traits, growth and carbon and nitrogen distribution. Elevated air CO2 concentration and temperature do not have synergistic effect to the poplar cuttings.

Key words: CO2 concentration, temperature, poplar, photosynthetic traits, carbon and nitrogen distribution

中图分类号: