|
何立红, 李志文, 刘劲军, 等. 油茶象危害与小果油茶果实特征的相关性. 林业科学, 2014, 50 (12): 151- 155.
|
|
He L H , Li Z W , Liu J J , et al. Correlation between damage of Curculio chinensis and fruit traits of Camellia meiocarpa. Scientia Silvae Sinicae, 2014, 50 (12): 151- 155.
|
|
李苗苗, 舒金平, 张威, 等. 茶籽象危害与不同品种油茶果实物理性状的关系. 林业科学研究, 2017, 30 (2): 232- 237.
|
|
Li M M , Shu J P , Zhang W , et al. Relationship between Curculio chinensis damage and physical characteristics of cones among Camellia oleifera varieties. Forest Research, 2017, 30 (2): 232- 237.
|
|
李志文, 何立红, 马玲, 等. 果实大小对油茶象幼虫生长的影响. 应用生态学报, 2014, 25 (12): 3580- 3586.
|
|
Li Z W , He L H , Ma L , et al. Influence of fruit size of Camellia meiocarpa on growth of oil tea weevil, Curculio chinensis (Coleoptera: Curculionidae). Chinese Journal of Applied Ecology, 2014, 25 (12): 3580- 3586.
|
|
舒金平, 滕莹, 刘剑, 等. 油茶采前落果原因初步分析. 中国植保导刊, 2013, 33 (1): 9- 14.
doi: 10.3969/j.issn.1672-6820.2013.01.002
|
|
Shu J P , Teng Y , Liu J , et al. Preliminary analysis on the causes of pre-harvest fruit drop in Camellia oleifera. China Plant Protection, 2013, 33 (1): 9- 14.
doi: 10.3969/j.issn.1672-6820.2013.01.002
|
|
王晓杰, 甘鹏飞, 汤春蕾, 等. 植物抗病性与病害绿色防控: 主要科学问题及未来研究方向. 中国科学基金, 2020, 34 (4): 381- 392.
|
|
Wang X J , Gan P F , Tang C L , et al. Plant disease resistance and disease green prevention and control: major scientific issues and future research directions. Bulletin of National Natural Science Foundation of China, 2020, 34 (4): 381- 392.
|
|
张杰, 董莎萌, 王伟, 等. 植物免疫研究与抗病虫绿色防控: 进展, 机遇与挑战. 中国科学: 生命科学, 2019, 49 (11): 1479- 1507.
|
|
Zhang J , Dong S M , Wang W , et al. Plant immunity and sustainable control of pests in China: advances, opportunities, and challenges. Scientia Sinica (Vitae), 2019, 49 (11): 1479- 1507.
|
|
张守科, 方林鑫, 刘亚宁, 等. 茶籽象ATP合成酶基因在不同海拔选择压力下的遗传分化及结构变异. 林业科学, 2019, 55 (6): 65- 73.
|
|
Zhang S K , Fang L X , Liu Y N , et al. Genetic differentiation and structural variation of ATP synthase gene of Curculio chinensis (Coleptera: Curculionidae) under selection pressure at different altitudes. Scientia Silvae Sinicae, 2019, 55 (6): 65- 73.
|
|
张守科, 方林鑫, 舒金平, 等. 基于组成型抗性性状的油茶抗茶籽象的评价模型. 林业科学, 2020, 56 (12): 57- 74.
|
|
Zhang S K , Fang L X , Shu J P , et al. Evaluation model for resistance of Camellia oleifera to Curculio chinensis (Coleoptera: Curculionidae) based on fruit properties. Scientia Silvae Sinicae, 2020, 56 (12): 57- 74.
|
|
Adams A S , Aylward F O , Adams S M , et al. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Applied & Environmental Microbiology, 2013, 79 (11): 3468- 3475.
|
|
Agrawal A A , Hastings A P . Plant defense by latex: ecological genetics of inducibility in the milkweeds and a general review of mechanisms, evolution, and implications for agriculture. Journal of Chemical Ecology, 2019, 45 (10): 1004- 1018.
|
|
Bai S , Yao Z C , Raza M F , et al. Regulatory mechanisms of microbial homeostasis in insect gut. Insect Science, 2021, 28 (2): 286- 301.
|
|
Cheng C , Wickham J D , Chen L , et al. Bacterial microbiotas protect an invasive bark beetle from a pine defensive compound. Microbiome, 2018, 6 (1): 1- 16.
|
|
Douglas A E . Microbial brokers of insect-plant interactions revisited. Journal of Chemical Ecology, 2013, 39 (6): 952- 961.
|
|
Erb M , Reymond P . Molecular interactions between plants and insect herbivores. Annual review of plant biology, 2019, 70 (1): 527- 557.
|
|
Francoeur C B , Khadempour L , Moreira-Soto R D , et al. Bacteria contribute to plant secondary compound degradation in a generalist herbivore system. mBio, 2020, 11 (5): e02146- 20.
|
|
Grbić M , Van Leeuwen T , Clark R M , et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 2011, 479 (7374): 487- 492.
|
|
Gui F , Lan T , Zhao Y , et al. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein & Cell, 2020, 13 (1): 513- 531.
|
|
Gupta A , Nair S . Dynamics of insect-microbiome interaction influence host and microbial symbiont. Frontiers in Microbiology, 2020, 11, 1357.
|
|
Hammer T J , Bowers M D . Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia, 2015, 179 (1): 1- 14.
|
|
Hansen A K , Moran N A . The impact of microbial symbionts on host plant utilization by herbivorous insects. Molecular Ecology, 2014, 23 (6): 1473- 1496.
|
|
Liu X , Zhang J , Yan Q , et al. The molecular basis of host selection in a crucifer-specialized moth. Current Biology, 2020, 30 (22): 4476- 4482.
|
|
Mason C J , Jones A G , Felton G W . Co-option of microbial associates by insects and their impact on plant-folivore interactions. Plant, Cell & Environment, 2019, 42 (107): 1078- 1086.
|
|
Mason C J . Complex relationships at the intersection of insect gut microbiomes and plant defenses. Journal of Chemical Ecology, 2020, 46 (8): 793- 807.
|
|
Morera-Margarit P , Pope T W , Mitchell C , et al. Could bacterial associations determine the success of weevil species?. Annals of Applied Biology, 2021, 178 (1): 1- 11.
|
|
Nikoh N , Hosokawa T , Oshima K , et al. Reductive evolution of bacterial genome in insect gut environment. Genome biology and evolution, 2011, 3 (1): 702- 714.
|
|
Schuman M C , Baldwin I T . The layers of plant responses to insect herbivores. Annual Review of Entomology, 2016, 61 (1): 373- 394.
|
|
Shukla S P , Beran F . Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Molecular Ecology, 2020, 29 (7): 4692- 4705.
|
|
Xu H , Qian L , Wang X , et al. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proceedings of the National Academy of Sciences, 2019, 116 (2): 490- 495.
|
|
Yuan C , Xing L , Wang M , et al. Microbiota modulates gut immunity and promotes baculovirus infection in Helicoverpa armigera. Insect Science, 2021, 28 (6): 1766- 1779.
|
|
Zhang S K , Shu J P , Xue H J , et al. Genetic diversity in the camellia weevil, Curculio chinensis Chevrolat (Coleptera: Curculionidae) and inferences for the impact of host plant and human activity. Entomological Science, 2018, 21 (4): 447- 460.
|
|
Zhang S K , Shu J P , Xue H J , et al. The gut microbiota in Camellia weevils are influenced by plant secondary metabolites and contribute to saponin degradation. mSystems, 2020, 5 (2): e00692- 19.
|