|  | 何立红, 李志文, 刘劲军, 等.  油茶象危害与小果油茶果实特征的相关性. 林业科学, 2014, 50 (12): 151- 155. | 
																													
																						|  | He L H ,  Li Z W ,  Liu J J , et al.  Correlation between damage of Curculio chinensis and fruit traits of Camellia meiocarpa. Scientia Silvae Sinicae, 2014, 50 (12): 151- 155. | 
																													
																						|  | 李苗苗, 舒金平, 张威, 等.  茶籽象危害与不同品种油茶果实物理性状的关系. 林业科学研究, 2017, 30 (2): 232- 237. | 
																													
																						|  | Li M M ,  Shu J P ,  Zhang W , et al.  Relationship between Curculio chinensis damage and physical characteristics of cones among Camellia oleifera varieties. Forest Research, 2017, 30 (2): 232- 237. | 
																													
																						|  | 李志文, 何立红, 马玲, 等.  果实大小对油茶象幼虫生长的影响. 应用生态学报, 2014, 25 (12): 3580- 3586. | 
																													
																						|  | Li Z W ,  He L H ,  Ma L , et al.  Influence of fruit size of Camellia meiocarpa on growth of oil tea weevil, Curculio chinensis (Coleoptera: Curculionidae). Chinese Journal of Applied Ecology, 2014, 25 (12): 3580- 3586. | 
																													
																						|  | 舒金平, 滕莹, 刘剑, 等.  油茶采前落果原因初步分析. 中国植保导刊, 2013, 33 (1): 9- 14. doi: 10.3969/j.issn.1672-6820.2013.01.002
 | 
																													
																						|  | Shu J P ,  Teng Y ,  Liu J , et al.  Preliminary analysis on the causes of pre-harvest fruit drop in Camellia oleifera. China Plant Protection, 2013, 33 (1): 9- 14. doi: 10.3969/j.issn.1672-6820.2013.01.002
 | 
																													
																						|  | 王晓杰, 甘鹏飞, 汤春蕾, 等.  植物抗病性与病害绿色防控: 主要科学问题及未来研究方向. 中国科学基金, 2020, 34 (4): 381- 392. | 
																													
																						|  | Wang X J ,  Gan P F ,  Tang C L , et al.  Plant disease resistance and disease green prevention and control: major scientific issues and future research directions. Bulletin of National Natural Science Foundation of China, 2020, 34 (4): 381- 392. | 
																													
																						|  | 张杰, 董莎萌, 王伟, 等.  植物免疫研究与抗病虫绿色防控: 进展, 机遇与挑战. 中国科学: 生命科学, 2019, 49 (11): 1479- 1507. | 
																													
																						|  | Zhang J ,  Dong S M ,  Wang W , et al.  Plant immunity and sustainable control of pests in China: advances, opportunities, and challenges. Scientia Sinica (Vitae), 2019, 49 (11): 1479- 1507. | 
																													
																						|  | 张守科, 方林鑫, 刘亚宁, 等.  茶籽象ATP合成酶基因在不同海拔选择压力下的遗传分化及结构变异. 林业科学, 2019, 55 (6): 65- 73. | 
																													
																						|  | Zhang S K ,  Fang L X ,  Liu Y N , et al.  Genetic differentiation and structural variation of ATP synthase gene of Curculio chinensis (Coleptera: Curculionidae) under selection pressure at different altitudes. Scientia Silvae Sinicae, 2019, 55 (6): 65- 73. | 
																													
																						|  | 张守科, 方林鑫, 舒金平, 等.  基于组成型抗性性状的油茶抗茶籽象的评价模型. 林业科学, 2020, 56 (12): 57- 74. | 
																													
																						|  | Zhang S K ,  Fang L X ,  Shu J P , et al.  Evaluation model for resistance of Camellia oleifera to Curculio chinensis (Coleoptera: Curculionidae) based on fruit properties. Scientia Silvae Sinicae, 2020, 56 (12): 57- 74. | 
																													
																						|  | Adams A S ,  Aylward F O ,  Adams S M , et al.  Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Applied & Environmental Microbiology, 2013, 79 (11): 3468- 3475. | 
																													
																						|  | Agrawal A A ,  Hastings A P .  Plant defense by latex: ecological genetics of inducibility in the milkweeds and a general review of mechanisms, evolution, and implications for agriculture. Journal of Chemical Ecology, 2019, 45 (10): 1004- 1018. | 
																													
																						|  | Bai S ,  Yao Z C ,  Raza M F , et al.  Regulatory mechanisms of microbial homeostasis in insect gut. Insect Science, 2021, 28 (2): 286- 301. | 
																													
																						|  | Cheng C ,  Wickham J D ,  Chen L , et al.  Bacterial microbiotas protect an invasive bark beetle from a pine defensive compound. Microbiome, 2018, 6 (1): 1- 16. | 
																													
																						|  | Douglas A E .  Microbial brokers of insect-plant interactions revisited. Journal of Chemical Ecology, 2013, 39 (6): 952- 961. | 
																													
																						|  | Erb M ,  Reymond P .  Molecular interactions between plants and insect herbivores. Annual review of plant biology, 2019, 70 (1): 527- 557. | 
																													
																						|  | Francoeur C B ,  Khadempour L ,  Moreira-Soto R D , et al.  Bacteria contribute to plant secondary compound degradation in a generalist herbivore system. mBio, 2020, 11 (5): e02146- 20. | 
																													
																						|  | Grbić M ,  Van Leeuwen T ,  Clark R M , et al.  The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 2011, 479 (7374): 487- 492. | 
																													
																						|  | Gui F ,  Lan T ,  Zhao Y , et al.  Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein & Cell, 2020, 13 (1): 513- 531. | 
																													
																						|  | Gupta A ,  Nair S .  Dynamics of insect-microbiome interaction influence host and microbial symbiont. Frontiers in Microbiology, 2020, 11, 1357. | 
																													
																						|  | Hammer T J ,  Bowers M D .  Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia, 2015, 179 (1): 1- 14. | 
																													
																						|  | Hansen A K ,  Moran N A .  The impact of microbial symbionts on host plant utilization by herbivorous insects. Molecular Ecology, 2014, 23 (6): 1473- 1496. | 
																													
																						|  | Liu X ,  Zhang J ,  Yan Q , et al.  The molecular basis of host selection in a crucifer-specialized moth. Current Biology, 2020, 30 (22): 4476- 4482. | 
																													
																						|  | Mason C J ,  Jones A G ,  Felton G W .  Co-option of microbial associates by insects and their impact on plant-folivore interactions. Plant, Cell & Environment, 2019, 42 (107): 1078- 1086. | 
																													
																						|  | Mason C J .  Complex relationships at the intersection of insect gut microbiomes and plant defenses. Journal of Chemical Ecology, 2020, 46 (8): 793- 807. | 
																													
																						|  | Morera-Margarit P ,  Pope T W ,  Mitchell C , et al.  Could bacterial associations determine the success of weevil species?. Annals of Applied Biology, 2021, 178 (1): 1- 11. | 
																													
																						|  | Nikoh N ,  Hosokawa T ,  Oshima K , et al.  Reductive evolution of bacterial genome in insect gut environment. Genome biology and evolution, 2011, 3 (1): 702- 714. | 
																													
																						|  | Schuman M C ,  Baldwin I T .  The layers of plant responses to insect herbivores. Annual Review of Entomology, 2016, 61 (1): 373- 394. | 
																													
																						|  | Shukla S P ,  Beran F .  Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Molecular Ecology, 2020, 29 (7): 4692- 4705. | 
																													
																						|  | Xu H ,  Qian L ,  Wang X , et al.  A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proceedings of the National Academy of Sciences, 2019, 116 (2): 490- 495. | 
																													
																						|  | Yuan C ,  Xing L ,  Wang M , et al.  Microbiota modulates gut immunity and promotes baculovirus infection in Helicoverpa armigera. Insect Science, 2021, 28 (6): 1766- 1779. | 
																													
																						|  | Zhang S K ,  Shu J P ,  Xue H J , et al.  Genetic diversity in the camellia weevil, Curculio chinensis Chevrolat (Coleptera: Curculionidae) and inferences for the impact of host plant and human activity. Entomological Science, 2018, 21 (4): 447- 460. | 
																													
																						|  | Zhang S K ,  Shu J P ,  Xue H J , et al.  The gut microbiota in Camellia weevils are influenced by plant secondary metabolites and contribute to saponin degradation. mSystems, 2020, 5 (2): e00692- 19. |