林业科学 ›› 2022, Vol. 58 ›› Issue (1): 22-31.doi: 10.11707/j.1001-7488.20220103
温文杰,王冬梅*
收稿日期:
2020-07-14
出版日期:
2022-01-25
发布日期:
2022-03-08
通讯作者:
王冬梅
基金资助:
Wenjie Wen,Dongmei Wang*
Received:
2020-07-14
Online:
2022-01-25
Published:
2022-03-08
Contact:
Dongmei Wang
摘要:
目的: 探究青海黄土高寒区4种典型人工林树木(针叶和阔叶2种生活型)叶片的有机碳(OC)、全氮(TN)、全磷(TP)含量和化学计量特征,及其随生长季阶段(Ⅰ:5月15日—6月15日; Ⅱ:6月15日—7月15日; Ⅲ:7月15日—8月15日)和坡位的变化,为指导青海高寒森林的经营管理提供科学依据。方法: 野外采集华北落叶松、青海云杉、白桦和青杨4种树木叶片样品,室内测定叶片的OC、TN和TP含量,通过正态性检验、单因素方差分析、邓肯多重比较、相关性分析、除趋势对应分析、冗余分析和蒙特卡洛置换检验,探究叶片养分含量及化学计量特征。结果: 4种树木叶片的OC、TN和TP含量平均值(变化范围)分别为591.84(571.19~605.67)、17.76(7.14~27.62)和1.47(0.81~2.65)g ·kg-1,变异系数表现为TP > TN > OC; 阔叶树叶片TN含量高于针叶树,阔叶树叶片TN和TP含量受生长季阶段的影响大于针叶树; 4种树木叶片的C ∶N(OC ∶TN)、C ∶P(OC ∶TP)和N ∶P(TN ∶TP)平均值(变化范围)为38.87 (26.04~97.73)、1 042.97(667.53~1 971.00)和28.32(18.87~51.50),变异系数表现为C ∶N < N ∶P < C ∶P; 阔叶树叶片C ∶N和C ∶P受生长季阶段的影响大于针叶树; 除青海云杉外,其他3种树木叶片的TN和TP含量极显著正相关(P < 0.01); 生长季阶段和生活型均极显著影响树木叶片OC、TN和TP含量及化学计量比(P < 0.01),而坡位影响不显著(P>0.05)。结论: 青海黄土高寒区青海云杉叶片C ∶N和C ∶P较高,N ∶P较低,说明其生长较慢且更多受TN限制,要注意TN养分的补给。生长季阶段和针叶、阔叶生活型是影响青海黄土高寒区4种树木叶片养分含量和化学计量比的显著因素(P < 0.01),养分管理要关注树木所属的生活型和所处的生长季阶段。
中图分类号:
温文杰,王冬梅. 青海黄土高寒区4种典型人工林树木叶片碳氮磷含量及化学计量特征[J]. 林业科学, 2022, 58(1): 22-31.
Wenjie Wen,Dongmei Wang. Content and Stoichiometric Characteristics of Carbon, Nitrogen, and Phosphorus in Leaves of Four Typical Plantation Species in the Alpine Zone of the Loess Plateau in Qinghai[J]. Scientia Silvae Sinicae, 2022, 58(1): 22-31.
表1
样地基本特征"
林分类型 Forest types | 样地编号 Plot codes | 海拔 Altitude/m | 坡度 Slope/(°) | 坡向 Slope aspect | 坡位 Slope position | 平均树高 Mean tree height/m | 平均胸径 Mean DBH/cm |
华北落叶松林 L. principis- rupprechtii forest | 1 | 2 786 | 15.4 | 阴坡Shady slope | 下坡Downhill | 7.5 | 10.4 |
2 | 2 817 | 12.4 | 阴坡Shady slope | 下坡Downhill | 9.0 | 16.3 | |
3 | 2 820 | 7.8 | 阴坡Shady slope | 下坡Downhill | 9.8 | 18.4 | |
4 | 2 840 | 12.9 | 阴坡Shady slope | 中坡Mid-slope | 8.7 | 14.7 | |
5 | 2 910 | 13.0 | 阴坡Shady slope | 中坡Mid-slope | 11.6 | 12.7 | |
6 | 2 920 | 25.0 | 阴坡Shady slope | 上坡Uphill | 8.9 | 14.2 | |
7 | 2 930 | 14.3 | 阴坡Shady slope | 上坡Uphill | 11.9 | 13.0 | |
青海云杉林 P. crassifolia forest | 8 | 2 822 | 19.5 | 阴坡Shady slope | 下坡Downhill | 7.9 | 12.1 |
9 | 2 826 | 18.8 | 阴坡Shady slope | 下坡Downhill | 8.7 | 12.2 | |
10 | 2 871 | 17.7 | 阴坡Shady slope | 中坡Mid-slope | 8.5 | 11.5 | |
11 | 2 878 | 14.1 | 阴坡Shady slope | 中坡Mid-slope | 8.6 | 14.1 | |
12 | 2 907 | 20.9 | 阴坡Shady slope | 上坡Uphill | 9.6 | 12.9 | |
13 | 2 911 | 18.9 | 阴坡Shady slope | 上坡Uphill | 11.8 | 12.2 | |
白桦林 B. platyphylla forest | 14 | 2 802 | 16.3 | 阴坡Shady slope | 下坡Downhill | 6.2 | 14.3 |
15 | 2 812 | 16.3 | 阴坡Shady slope | 下坡Downhill | 5.5 | 8.3 | |
16 | 2 862 | 16.4 | 阴坡Shady slope | 中坡Mid-slope | 3.3 | 9.5 | |
17 | 2 851 | 19.3 | 阴坡Shady slope | 中坡Mid-slope | 3.5 | 9.9 | |
18 | 2 921 | 19.5 | 阴坡Shady slope | 上坡Uphill | 6.3 | 14.1 | |
19 | 2 889 | 16.5 | 阴坡Shady slope | 上坡Uphill | 3.9 | 12.3 | |
青杨林 P. cathayana forest | 20 | 2 803 | 17.2 | 阴坡Shady slope | 下坡Downhill | 8.8 | 16.9 |
21 | 2 804 | 25.0 | 阴坡Shady slope | 下坡Downhill | 8.7 | 2.9 | |
22 | 2 826 | 6.4 | 阴坡Shady slope | 中坡Mid-slope | 7.0 | 11.3 | |
23 | 2 835 | 6.7 | 阴坡Shady slope | 中坡Mid-slope | 7.4 | 12.1 | |
24 | 2 847 | 17.1 | 阴坡Shady slope | 上坡Uphill | 7.8 | 13.5 | |
25 | 2 860 | 18.5 | 阴坡Shady slope | 上坡Uphill | 7.3 | 10.6 |
表2
树木叶片OC、TN和TP含量的统计特征①"
元素 Elements | 项目 Item | 华北落叶松 L. principis-rupprechtii | 青海云杉 P. crassifolia | 白桦 B. platyphylla | 青杨 P. cathayana |
OC | n | 15 | 12 | 11 | 12 |
AM/(g·kg-1) | 599.81 | 591.47 | 605.77 | 571.19 | |
GM/(g·kg-1) | 599.69 | 590.69 | 605.67 | 571.08 | |
CV(%) | 2.08 | 5.16 | 1.90 | 2.02 | |
P(S-W) | 0.113 | 0.001 | 0.021 | 0.736 | |
TN | n | 15 | 12 | 11 | 12 |
AM/(g·kg-1) | 22.67 | 7.14 | 27.62 | 23.31 | |
GM/(g·kg-1) | 22.26 | 7.10 | 27.36 | 22.58 | |
CV(%) | 19.41 | 11.90 | 14.67 | 26.08 | |
P(S-W) | 0.634 | 0.593 | 0.401 | 0.264 | |
TP | n | 15 | 9 | 11 | 12 |
AM/(g·kg-1) | 2.65 | 0.85 | 1.57 | 2.25 | |
GM/(g·kg-1) | 2.32 | 0.81 | 1.18 | 1.57 | |
CV(%) | 44.91 | 37.65 | 66.24 | 68.00 | |
P(S-W) | 0.061 | 0.005 | 0.047 | 0.217 |
表3
树木叶片OC、TN和TP含量的生活型和生长季阶段比较①"
元素 Elements | 项目 Item | 针叶树 Coniferous trees | 阔叶树 Broad-leaved trees | P2 |
OC | Ⅰ/(g·kg-1) | 600.48±10.86a | 590.12±20.97a | 0.134 |
Ⅱ/(g·kg-1) | 585.68±36.34a | 586.39±27.54a | 0.969 | |
Ⅲ/(g·kg-1) | 600.54±14.15a | 584.68±16.35a | 0.103 | |
P1 | 0.299 | 0.873 | ||
TN | Ⅰ/(g·kg-1) | 17.51±10.13a | 29.65±3.36a | 0.001 |
Ⅱ/(g·kg-1) | 13.89±6.35a | 22.17±3.94b | 0.016 | |
Ⅲ/(g·kg-1) | 14.51±7.70a | 20.70±4.30b | 0.116 | |
P1 | 0.606 | 0.000 | ||
TP | Ⅰ/(g·kg-1) | 2.36±1.57a | 3.07±0.83a | 0.195 |
Ⅱ/(g·kg-1) | 1.77±0.64a | 1.35±0.66b | 0.265 | |
Ⅲ/(g·kg-1) | 0.85±0.13a | 0.41±0.15c | 0.003 | |
P1 | 0.167 | 0.000 |
表4
树木叶片OC、TN和TP含量的生活型和坡位比较①"
元素 Elements | 项目 Item | 针叶树 Coniferous trees | 阔叶树 Broad-leaved trees | P2 |
OC | 下坡Downhill/(g·kg-1) | 603.95±11.74a | 592.28±16.17a | 0.104 |
中坡Mid-slope/(g·kg-1) | 586.84±33.67a | 583.83±23.58a | 0.836 | |
上坡Uphill/(g·kg-1) | 596.73±13.07a | 587.64±23.69a | 0.358 | |
P3 | 0.838 | 0.755 | ||
TN | 下坡Downhill/(g·kg-1) | 16.28±9.11a | 24.41±6.08a | 0.058 |
中坡Mid-slope/(g·kg-1) | 14.59±7.69a | 26.27±6.70a | 0.005 | |
上坡Uphill/(g·kg-1) | 16.45±9.61a | 25.30±4.27a | 0.032 | |
P3 | 0.886 | 0.824 | ||
TP | 下坡Downhill/(g·kg-1) | 2.10±1.46a | 1.38±1.09a | 0.299 |
中坡Mid-slope/(g·kg-1) | 2.10±1.10a | 2.21±1.59a | 0.870 | |
上坡Uphill/(g·kg-1) | 1.86±1.37a | 2.12±1.28a | 0.705 | |
P3 | 0.921 | 0.449 |
表5
树木叶片C ∶N、C ∶P和N ∶P的统计特征"
计量比 Stoichiometric ratios | 项目 Item | 华北落叶松 L. principis-rupprechtii | 青海云杉 P. crassifolia | 白桦 B. platyphylla | 青杨 P. cathayana |
C∶N | n | 15 | 12 | 11 | 12 |
AM | 32.04 | 97.73 | 26.04 | 30.45 | |
GM | 31.43 | 97.14 | 25.83 | 29.50 | |
CV(%) | 19.79 | 11.48 | 12.90 | 26.01 | |
P(S-W) | 0.188 | 0.515 | 0.424 | 0.391 | |
C∶P | n | 15 | 9 | 11 | 12 |
AM | 803.11 | 1 971.00 | 1 876.90 | 1 640.37 | |
GM | 667.53 | 1 877.43 | 1 330.24 | 938.01 | |
CV(%) | 71.89 | 30.39 | 87.87 | 120.79 | |
P(S-W) | 0.000 | 0.274 | 0.013 | 0.000 | |
N∶P | n | 15 | 9 | 11 | 12 |
AM | 24.80 | 19.63 | 69.01 | 45.55 | |
GM | 21.24 | 18.87 | 51.50 | 31.80 | |
CV(%) | 70.28 | 24.71 | 83.61 | 99.71 | |
P(S-W) | 0.000 | 0.040 | 0.006 | 0.000 |
表6
树木叶片C ∶N、C ∶P和N ∶P的生活型和生长季阶段比较"
计量比 Stoichiometric ratios | 项目 Item | 针叶树 Coniferous trees | 阔叶树 Broad-leaved trees | P2 |
C∶N | Ⅰ | 60.03±38.13a | 23.47±2.61b | 0.005 |
Ⅱ | 62.25±33.31a | 31.51±4.58a | 0.046 | |
Ⅲ | 62.49±33.25a | 34.08±6.68a | 0.067 | |
P1 | 0.986 | 0.000 | ||
C∶P | Ⅰ | 1 218.26±935.21a | 532.20±144.02b | 0.025 |
Ⅱ | 1 043.48±620.15a | 1 614.45±1 352.66b | 0.308 | |
Ⅲ | 1 866.78±281.19a | 4 131.59±1 476.02a | 0.038 | |
P1 | 0.328 | 0.000 | ||
N∶P | Ⅰ | 18.43±3.67b | 22.57±5.18b | 0.032 |
Ⅱ | 17.41±4.11b | 54.96±50.98b | 0.057 | |
Ⅲ | 56.60±14.26a | 121.28±40.06a | 0.034 | |
P1 | 0.000 | 0.000 |
表7
树木叶片C ∶N、C ∶P和N ∶P的生活型和坡位比较"
计量比 Stoichiometric ratios | 项目 Item | 针叶树 Coniferous trees | 阔叶树 Broad-leaved trees | P2 |
C∶N | 下坡Downhill | 63.40±41.32a | 29.90±7.61a | 0.053 |
中坡Mid-slope | 61.35±31.53a | 27.59±7.69a | 0.010 | |
上坡Uphill | 58.40±32.38a | 27.72±4.29a | 0.019 | |
P3 | 0.958 | 0.762 | ||
C∶P | 下坡Downhill | 1 286.93±954.98a | 2 526.90±2 233.98a | 0.154 |
中坡Mid-slope | 1 008.01±713.36a | 1 601.17±1 901.45a | 0.423 | |
上坡Uphill | 1 269.77±725.33a | 1 229.09±1 126.23a | 0.936 | |
P3 | 0.747 | 0.377 | ||
N∶P | 下坡Downhill | 21.45±8.33a | 81.60±71.08a | 0.023 |
中坡Mid-slope | 17.28±5.06a | 49.98±44.72a | 0.059 | |
上坡Uphill | 25.91±19.59a | 41.83±34.55a | 0.302 | |
P3 | 0.399 | 0.314 |
毕建华, 苏宝玲, 于大炮, 等. 辽东山区不同森林类型生态化学计量特征. 生态学杂志, 2017, 36 (11): 3109- 3115. | |
Bi J H , Su B L , Yu D P , et al. Ecological stoichiometry of different forest types in mountainous region of eastern Liaoning Province. Chinese Journal of Ecology, 2017, 36 (11): 3109- 3115. | |
邓成华, 吴龙龙, 张雨婷, 等. 不同林龄油茶人工林土壤-叶片碳氮磷生态化学计量特征. 生态学报, 2019, 39 (24): 9152- 9161. | |
Deng C H , Wu L L , Zhang Y T , et al. The stoichiometry characteristics of soil and plant carbon, nitrogen, and phosphorus in different stand ages in Camellia oleifera plantation. Acta Ecologica Sinica, 2019, 39 (24): 9152- 9161. | |
樊月, 陈志为, 潘云龙, 等. 林龄和坡位对杉桐混交林化学计量特征的影响. 应用与环境生物学报, 2019, 25 (2): 246- 253. | |
Fan Y , Chen Z W , Pan Y L , et al. Effects of stand, age, and slope position on the stoichiometric characteristics of the Cunninghamia lanceolata-Aleurites montana mixed forest. Chinese Journal of Applied and Environmental Biology, 2019, 25 (2): 246- 253. | |
范叶青, 周国模, 施拥军, 等. 坡向坡位对毛竹林生物量与碳储量的影响. 浙江农林大学学报, 2012, 29 (3): 321- 327.
doi: 10.3969/j.issn.2095-0756.2012.03.001 |
|
Fan Y Q , Zhou G M , Shi Y J , et al. Relationship of slope aspect and position on biomass and carbon storage in a Phyllostachys edulis stand. Journal of Zhejiang A & F University, 2012, 29 (3): 321- 327.
doi: 10.3969/j.issn.2095-0756.2012.03.001 |
|
龚雪伟, 吕光辉, 马玉, 等. 艾比湖流域2种典型荒漠盐生植物冠下土与叶片的生态化学计量特征. 林业科学, 2017, 53 (4): 28- 36. | |
Gong X W , Lü G H , Ma Y , et al. Ecological stoichiometry characteristics in the soil under crown and leaves of two desert halophytes with soil salinity gradients in Ebinur lake basin. Scientia Silvae Sinicae, 2017, 53 (4): 28- 36. | |
胡启武, 聂兰琴, 郑艳明, 等. 沙化程度和林龄对湿地松叶片及林下土壤C、N、P化学计量特征影响. 生态学报, 2014, 34 (9): 2246- 2255. | |
Hu Q W , Nie L Q , Zheng Y M , et al. Effects of desertification intensity and stand age on leaf and soil carbon, nitrogen and phosphorus stoichiometry in Pinus elliottii plantation. Acta Ecologica Sinica, 2014, 34 (9): 2246- 2255. | |
李从娟, 徐新文, 孙永强, 等. 不同生境下三种荒漠植物叶片及土壤C、N、P的化学计量特征. 干旱区地理, 2014, 37 (5): 996- 1004. | |
Li C J , Xu X W , Sun Y Q , et al. Stoichiometric characteristics of C, N, P for three desert plants leaf and soil at different habitats. Arid Land Geography, 2014, 37 (5): 996- 1004. | |
李旭, 于洁, 李峰, 等. 不同水位和竞争模式对典型湿地植物生态化学计量特征的影响. 湖泊科学, 2019, 31 (6): 1651- 1661. | |
Li X , Yu J , Li F , et al. Effects of water level and competition pattern on ecological stoichiometry characteristics of a typical wetland plant Polygonum hydropiper in Lake Dongting. Journal of Lake Sciences, 2019, 31 (6): 1651- 1661. | |
刘冬, 张剑, 包雅兰, 等. 敦煌阳关湿地芦苇叶片养分重吸收模式及其对土壤水分的响应. 应用生态学报, 2020, 31 (3): 807- 813. | |
Liu D , Zhang J , Bao Y L , et al. Nutrient resorption patterns of Phragmites australis leaves and its response to soil moisture in Yangguan wetland, Dunhuang, Northwest China. Chinese Journal of Applied Ecology, 2020, 31 (3): 807- 813. | |
刘娜, 喻理飞, 赵庆, 等. 喀斯特高原石漠化区次生林叶片-枯落物-土壤连续体碳氮磷生态化学计量特征. 应用与环境生物学报, 2020, 26 (3): 681- 688. | |
Liu N , Yu L F , Zhao Q , et al. C: N: P stoichiometry of leaf-litter-soil continuum in secondary forests of the rocky desertification regions of the karst plateau. Chinese Journal of Applied and Environmental Biology, 2020, 26 (3): 681- 688. | |
乔雨宁, 董从国, 黄敏, 等. 黄土高原不同植被带刺槐生态化学计量特征. 水土保持研究, 2020, 27 (4): 31- 31-38, 46. | |
Qiao Y N , Dong C G , Huang M , et al. Ecological stoichiometric characteristics of Robinia pseudoacacia in different vegetation zones on the Loess Plateau. Research of Soil and Water Conservation, 2020, 27 (4): 31- 31-38, 46. | |
任书杰, 于贵瑞, 姜春明, 等. 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征. 应用生态学报, 2012, 23 (3): 581- 586. | |
Ren S J , Yu G R , Jiang C M , et al. Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the north-south transect of east China. Chinese Journal of Applied Ecology, 2012, 23 (3): 581- 586. | |
孙小妹, 陈菁菁, 李金霞, 等. 施肥后青藏高原亚高寒草甸典型物种生态化学计量特征及光合特性的变化. 兰州大学学报(自然科学版), 2018, 54 (6): 804- 810. | |
Sun X M , Chen J J , Li J X , et al. Effects of nutrient addition on ecological stoichiometric characteristics and photosynthesis of representative species in a sub-alpine meadow community. Journal of Lanzhou University(Natural Sciences), 2018, 54 (6): 804- 810. | |
王晶苑, 王绍强, 李纫兰, 等. 中国四种森林类型主要优势植物的C: N: P化学计量学特征. 植物生态学报, 2011, 35 (6): 587- 595. | |
Wang J Y , Wang S Q , Li R L , et al. C: N: P stoichiometric characteristics of four forest types' dominant tree species in China. Chinese Journal of Plant Ecology, 2011, 35 (6): 587- 595. | |
王树力, 郝玉琢, 周磊, 等. 水曲柳人工林树木叶片营养元素及其化学计量特征的季节动态. 北京林业大学学报, 2018, 40 (10): 24- 33. | |
Wang S L , Hao Y Z , Zhou L , et al. Seasonal variations of leaf nutrient element concentrations and their stoichiometric characteristics in Fraxinus mandshurica plantations. Journal of Beijing Forestry University, 2018, 40 (10): 24- 33. | |
吴鹏. 茂兰喀斯特森林自然恢复过程中植物叶片-凋落物-土壤生态化学计量特征研究. 北京: 中国林业科学研究院, 2017. | |
Wu P . Study on ecological stoichiometric characteristics of plant leaf-litter-soil in the process of natural restoration in Maolan Karst forest. Beijing: Chinese Academy of Forestry, 2017. | |
杨斌, 彭长辉, 张贤, 等. 干旱胁迫对刺槐幼苗叶片氮含量、光合速率及非结构性碳水化合物的影响. 应用与环境生物学报, 2019, 25 (6): 1261- 1269. | |
Yang B , Peng C H , Zhang X , et al. Effects of drought stress on leaf nitrogen content, rate of photosynthesis, and non-structural carbohydrates in Robinia pseudoacacia L. seedlings. Chinese Journal of Applied and Environmental Biology, 2019, 25 (6): 1261- 1269. | |
杨惠敏, 王冬梅. 草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展. 草业学报, 2011, 20 (2): 244- 252. | |
Yang H M , Wang D M . Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors. Acta Prataculturae Sinica, 2011, 20 (2): 244- 252. | |
余明, 王卓敏, 薛立. 不同坡位对4种阔叶乡土树种叶片养分的影响. 中南林业科技大学学报, 2019, 39 (5): 89- 94. | |
Yu M , Wang Z M , Xue L . Effects of different slope positions on leaf nutrient of four broadleaf native tree species. Journal of Central South University of Forestry & Technology, 2019, 39 (5): 89- 94. | |
张珂, 何明珠, 李新荣, 等. 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征. 生态学报, 2014, 34 (22): 6538- 6547. | |
Zhang K , He M Z , Li X R , et al. Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert. Acta Ecologica Sinica, 2014, 34 (22): 6538- 6547. | |
张书齐, 许全, 姚海荣, 等. 海南岛海岸带木麻黄和厚藤叶片碳、氮、磷含量及其化学计量特征. 植物研究, 2020, 40 (2): 224- 232. | |
Zhang S Q , Xu Q , Yao H R , et al. Carbon, nitrogen and phosphorus contents and their ecological stoichiometry characteristics in leaves of Casuarina equisetifolia and Ipomoea pes-caprae in the coastal zone of Hainan island. Bulletin of Botanical Research, 2020, 40 (2): 224- 232. | |
宗宁, 石培礼, 耿守保, 等. 北方山区主要森林类型树木叶片氮、磷回收效率研究. 中国生态农业学报, 2017, 25 (4): 520- 529. | |
Zong N , Shi P L , Geng S B , et al. Nitrogen and phosphorus resorption efficiency of forests in North China. Chinese Journal of Eco-Agriculture, 2017, 25 (4): 520- 529. | |
Elser J J , Fagan W F , Denno R F , et al. Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, 408 (6812): 578- 580.
doi: 10.1038/35046058 |
|
Fan H B , Wu J P , Liu W F , et al. Linkages of plant and soil C: N: P stoichiometry and their relationships to forest growth in subtropical plantations. Plant Soil, 2015, (1/2): 127- 138. | |
Han W X , Fang J Y , Guo D , et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 2005, 168 (2): 377- 385.
doi: 10.1111/j.1469-8137.2005.01530.x |
|
Liu C J , Berg B , Kutsch W , et al. Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests. Global Ecology & Biogeography, 2006, 15 (5): 438- 444. | |
Mo Q F , Zou B , Li Y W , et al. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest. Scientific Reports, 2015, 5 (1): 14605.
doi: 10.1038/srep14605 |
|
Niklas K J , Owens T , Reich P B , et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 2005, 8 (6): 636- 642.
doi: 10.1111/j.1461-0248.2005.00759.x |
|
Reich P B , Oleksyn J . Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS, 2004, 101 (30): 11001- 11006.
doi: 10.1073/pnas.0403588101 |
|
Rentería L Y , Jaramillo V J . Rainfall drives leaf traits and leaf nutrient resorption in a tropical dry forest in Mexico. Oecologia, 2011, 165 (1): 201- 211.
doi: 10.1007/s00442-010-1704-3 |
|
Rong Q Q , Liu J T , Cai Y P , et al. Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay coastal wetland, China. Ecological Engineering, 2015, 76, 57- 65. | |
Sistla S A , Schimel J P . Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytologist, 2012, 196 (1): 68- 78.
doi: 10.1111/j.1469-8137.2012.04234.x |
|
Wei H X , He X Y . Foliar C/N stoichiometry in urban forest trees on a global scale. Journal of Forestry Research, 2021, 32 (4): 1429- 1443.
doi: 10.1007/s11676-020-01188-6 |
|
Woods H A , Makino W , Cotner J B , et al. Temperature and the chemical composition of poikilothermic organisms. Functional Ecology, 2003, 17 (2): 237- 245.
doi: 10.1046/j.1365-2435.2003.00724.x |
|
Wu T G , Wang G G , Wu Q T , et al. Patterns of leaf nitrogen and phosphorus stoichiometry among Quercus acutissima provenances across China. Ecological Complexity, 2014, 17 (1): 32- 39. |
[1] | 刘广路, 范少辉, 唐晓鹿, 刘希珍. 毛竹向杉木林扩展过程中叶功能性状的适应策略[J]. 林业科学, 2017, 53(8): 17-25. |
[2] | 王艳兵, 王彦辉, 熊伟, 姚依强, 张桐, 李振华. 六盘山半干旱区华北落叶松树干液流速率及主要影响因子的坡位差异[J]. 林业科学, 2017, 53(6): 10-20. |
[3] | 陈文思, 朱清科, 刘蕾蕾, 马欢, 赵维军, 王瑜. 陕北半干旱黄土区沙棘人工林的死亡率及适宜地形因子[J]. 林业科学, 2016, 52(5): 9-16. |
[4] | 喻林华, 方晰, 项文化, 石俊, 刘兆丹, 李雷达. 亚热带4种林分类型枯落物层和土壤层的碳氮磷化学计量特征[J]. 林业科学, 2016, 52(10): 10-21. |
[5] | 范叶青, 周国模, 施拥军, 杜华强, 周宇峰, 徐小军. 地形条件对毛竹林分结构和植被碳储量的影响[J]. 林业科学, 2013, 49(11): 177-182. |
[6] | 陈琳;曾杰;徐大平;赵志刚;郭俊杰;林开勤;沙二. 氮素营养对西南桦幼苗生长及叶片养分状况的影响[J]. 林业科学, 2010, 46(5): 35-40. |
[7] | 王昆 白帆 黄利亚. 长白山自然保护区保护效果评价[J]. 林业科学, 2010, 46(1): 1-8. |
[8] | 吴玲 朱红 卢毅军 高亚红. 杭州市地被植物资源及开发利用潜力分析[J]. 林业科学, 2007, 43(8): 60-64. |
[9] | 万雪琴 胡庭兴 张健 李贤伟 宫渊波. 坡耕地退耕还林后的植被恢复[J]. 林业科学, 2005, 41(2): 191-194. |
[10] | 方志伟. 杉檫混交根系效应的研究[J]. 林业科学, 2001, 37(zk): 154-157. |
[11] | 于顺利 陈灵芝 马克平. 东北地区蒙古栎群落生活型谱比较[J]. 林业科学, 2000, 36(3): 118-121. |
[12] | 李贻铨,陈宏峻,陈道东,张瑛,胡世才. 火炬松和湿地松幼林施肥对土壤性质和叶片养分影响*[J]. 林业科学, 1999, 35(zk): 95-100. |
[13] | 陈道东 李贻铨 徐清彦. 林木叶片最适养分状态的模拟诊断[J]. , 1991, 27(1): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||