林业科学 ›› 2021, Vol. 57 ›› Issue (4): 142-152.doi: 10.11707/j.1001-7488.20210415
孙龙,刘祺,胡同欣*
收稿日期:
2019-11-18
出版日期:
2021-04-01
发布日期:
2021-05-21
通讯作者:
胡同欣
基金资助:
Long Sun,Qi Liu,Tongxin Hu*
Received:
2019-11-18
Online:
2021-04-01
Published:
2021-05-21
Contact:
Tongxin Hu
摘要:
林火是影响森林生态系统的重要因子之一,林火蔓延和发展深受森林可燃物含水率的影响,尤其是林火的发生直接受地表死可燃物含水率的影响。因此,准确预测森林地表死可燃物含水率是预报森林火险和火行为的关键,加强森林死可燃物含水率预测模型研究尤为重要。从森林可燃物含水率的研究方法、研究模型及模型精度3方面综述研究现状,并对比评价现有模型。针对目前研究的诸多问题,提出5点展望:1)加强研究重点火险区野外含水率动态。利用已有的森林火险因子采集站和森林火险监测站获取不同环境因子和可燃物含水率及气象因子监测数据,构建重点火险区基于气象参数的森林可燃物含水率预测模型。2)加强森林可燃物的基础数据监测和收集。这可为全面构建森林火险等级系统奠定坚实的数据基础,同时还应建立精准的森林可燃物类型划分体系。3)加强研究可燃物含水率的空间异质性。应考虑不同影响因子下可燃物含水率动态,特别是了解小尺度内森林可燃物含水率的空间异质性,才能更准确进行林火预测预报。4)结合应用增强回归树(BRT)方法来提高模型精度。在可燃物含水率模型精度影响因子的研究中,运用BRT方法多次随机抽取一定量的数据,量化分析不同因子对模型精度的影响程度。5)结合GIS进行大尺度火险预警研究。综合应用RS和GIS技术,建立可燃物含水率的遥感反演模型,在准确模拟森林可燃物含水率空间分布的基础上,建立基于可燃物含水率的不同火险等级的预测模型。
中图分类号:
孙龙,刘祺,胡同欣. 森林地表死可燃物含水率预测模型研究进展[J]. 林业科学, 2021, 57(4): 142-152.
Long Sun,Qi Liu,Tongxin Hu. Advances in Research on Prediction Model of Moisture Content of Surface Dead Fuel in Forests[J]. Scientia Silvae Sinicae, 2021, 57(4): 142-152.
蔡文华, 杨健, 刘志华, 等. 黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子. 生态学报, 2012, 32 (11): 3303- 3312. | |
Cai W H , Yang J , Liu Z H , et al. Controls of post-fire tree recruitment in Great Xing'an Mountains in Heilongjiang Province. Acta Ecologica Sinica, 2012, 32 (11): 3303- 3312.
doi: 10.5846/stxb201105030574 |
|
高永刚, 张广英, 顾红, 等. 森林可燃物含水率气象预测模型在森林火险预报中的应用. 中国农学通报, 2008, 24 (9): 171- 175. | |
Gao Y G , Zhang G Y , Gu H , et al. Application of forecast model between forest fuel moisture and meteorological factors for forest fire danger forecast. Chinese Agricultural Science Bulletin, 2008, 24 (9): 171- 175. | |
韩焱红, 苗蕾, 赵鲁强, 等. 美国国家火险等级系统原理及应用. 科技导报, 2019, 37 (20): 76- 83. | |
Han Y H , Miao L , Zhao L Q , et al. Principle of the US national fire danger rating system and its application prospect. Science and Technology Review, 2019, 37 (20): 76- 83. | |
何仲秋. 塔河林业局几种可燃物类型生物量及含水量动态模型的研究. 哈尔滨: 东北林业大学硕士学位论文., 1992. | |
He Z Q . Study on dynamic models of biomass and water content of several combustible materials in Tahe Forestry Bureau. Harbin: MS thesis of Northeast Forestry University, 1992. | |
胡海清, 陆昕, 孙龙, 等. 大兴安岭典型林分地表死可燃物含水率动态变化及预测模型. 应用生态学报, 2016, 27 (7): 2212- 2224. | |
Hu H Q , Lu X , Sun L , et al. Dynamics and prediction models of ground surface dead fuel moisture content for typical stands in Great Xing'an Mountains, northeast China. Chinese Journal of Applied Ecology, 2016, 27 (7): 2212- 2224. | |
胡海清, 罗斯生, 罗碧珍, 等. 森林可燃物含水率及其预测模型研究进展. 世界林业研究, 2017, 30 (3): 64- 69. | |
Hu H Q , Luo S S , Luo B Z , et al. Forest fuel moisture content and its prediction model. World Forestry Research, 2017, 30 (3): 64- 69. | |
胡海清. 林火生态与管理. 北京: 中国林业出版社., 2005. | |
Hu H Q . Fire ecology and management. Beijing: China Forestry Publishing House, 2005. | |
金森, 姜文娟, 孙玉英. 用时滞和平衡含水率准确预测可燃物含水率的理论算法. 森林防火, 1999, (4): 12- 14. | |
Jin S , Jiang W J , Sun Y Y . Theoretical algorithm for accurately predicting moisture content of combustibles with time lag and equilibrium moisture content. Forest Fire Prevention, 1999, (4): 12- 14. | |
金森, 李亮. 时滞和平衡含水率直接估计法的有效性分析. 林业科学, 2010, 46 (2): 95- 102.
doi: 10.3969/j.issn.1672-8246.2010.02.020 |
|
Jin S , Li L . Validation of the method for direct estimation of time and equilibrium moisture content of forest fuel. Scientia Silvae Sinicae, 2010, 46 (2): 95- 102. | |
金森, 李亮, 赵玉晶. 用直接估计法预测落叶松枯枝含水率的稳定性和外推误差分析. 林业科学, 2011, 47 (6): 114- 121. | |
Jin S , Li L , Zhao Y J . Analysis on robustness and extrapolation errors of modeling fuel moisture content of dead twigs of larch by direct estimation from observed data. Scientia Silvae Sinicae, 2011, 47 (6): 114- 121. | |
金森, 周勇. 昆明典型地表死可燃物含水率预测模型的研究. 中南林业科技大学学报, 2014, 34 (12): 7- 15.
doi: 10.3969/j.issn.1673-923X.2014.12.003 |
|
Jin S , Zhou Y . Study on moisture content prediction model of dead surface fuels in typical stands, Kunming. Journal of Central South University of Forestry & Technology, 2014, 34 (12): 7- 15. | |
居恩德, 陈贵荣, 王瑞君. 可燃物含水率与气象要素相关性的研究. 森林防火, 1993, (1): 17- 21. | |
Ju E D , Chen G R , Wang R J . Study on correlation between moisture content of combustible materials and meteorological elements. Forest Fire Prevention, 1993, (1): 17- 21. | |
李世友, 舒清态, 马爱丽, 等. 华山松人工林凋落物层细小可燃物含水率预测模型研究. 林业资源管理, 2009, (1): 84- 88.
doi: 10.3969/j.issn.1002-6622.2009.01.018 |
|
Li S Y , Shu Q T , Ma A L , et al. Modeling on moisture content predicting of surface fuel of litter-fall layer in Pinus armandii plantations. Forest Resources Management, 2009, (1): 84- 88. | |
刘曦, 金森. 平衡含水率法预测死可燃物含水率的研究进展. 林业科学, 2007a, 43 (12): 126- 133. | |
Liu X , Jin S . Development of dead forest fuel moisture prediction based on equilibrium moisture content. Scientia Silvae Sinicae, 2007a, 43 (12): 126- 133. | |
刘曦, 金森. 湿度对可燃物时滞和平衡含水率的影响. 东北林业大学学报, 2007b, 35 (5): 44- 46. | |
Liu X , Jin S . Effect of humidity on timelag and equilibrium moisture content of forest fuels. Journal of Northeast Forestry University, 2007b, 35 (5): 44- 46. | |
刘昕, 邸雪颖. 三种方法对森林地表可燃物含水率的预测评价. 森林工程, 2013, 29 (2): 8- 13.
doi: 10.3969/j.issn.1001-005X.2013.02.002 |
|
Liu X , Di X Y . Evaluation of three prediction methods on forest surface fuel moisture. Forest Engineering, 2013, 29 (2): 8- 13. | |
卢欣艳, 牛树奎, 任云卯. 北京西山林场可燃物含水率与气象要素关系. 林业资源管理, 2010, (3): 79- 86.
doi: 10.3969/j.issn.1002-6622.2010.03.017 |
|
Lu X Y , Niu S K , Ren Y M . The relationship between fuel moisture and meteorological factors in Beijing Xishan Forest Centre. Forest Resources Management, 2010, (3): 79- 86. | |
马壮, 李亮, 金森. 直接估计法在帽儿山林场白桦林可燃物含水率的适用性分析. 中南林业科技大学学报, 2016, 36 (11): 54- 58. | |
Ma Z , Li L , Jin S . Applicability analysis method in water Maoershan birch forest fuel rate estimated directly. Journal of Central South University of Forestry & Technology, 2016, 36 (11): 54- 58. | |
满子源, 胡海清, 张运林, 等. 帽儿山地区典型地表可燃物含水率动态变化及预测模型. 北京林业大学学报, 2019, 41 (3): 49- 57. | |
Man Z Y , Hu H Q , Zhang Y L , et al. Dynamic change and prediction model of moisture content of surface fuel in Maoer Mountain of northeastern China. Journal of Beijing Forestry University, 2019, 41 (3): 49- 57. | |
齐怀琴, 周琼, 路旭明, 等. 基于Google Maps森林火灾监测系统设计与实现. 电视技术, 2013, 37 (17): 139- 142, 182.
doi: 10.3969/j.issn.1002-8692.2013.17.039 |
|
Qi H Q , Zhou Q , Lu X M , et al. Design and implementation of forest fire monitoring system based on Google Maps. Video Engineering, 2013, 37 (17): 139- 142, 182. | |
覃先林, 张子辉, 易浩若, 等. 一种预测森林可燃物含水率的方法. 火灾科学, 2001, 10 (3): 159- 162.
doi: 10.3969/j.issn.1004-5309.2001.03.007 |
|
Qin X L , Zhang Z H , Yi H R , et al. A methodology to predict the moisture of forest fuels. Fire Safety Science, 2001, 10 (3): 159- 162. | |
曲智林, 吴娟, 闵盈盈. 具有时滞的可燃物含水率预测模型. 东北林业大学学报, 2012, 40 (3): 120- 122.
doi: 10.3969/j.issn.1000-5382.2012.03.028 |
|
Qu Z L , Wu J , Min Y Y . Prediction model for forest fuel moisture with time delay. Journal of Northeast Forestry University, 2012, 40 (3): 120- 122. | |
薛煜, 王会岩, 张世萍. 落叶松人工林内可燃物载量、含水率与森林燃烧性关系的研究. 森林防火, 1996, (4): 21- 23. | |
Xue Y , Wang H Y , Zhang S P . Study on the relationship between combustible load, water content and forest burning in larch plantation. Forest Fire Prevention, 1996, (4): 21- 23. | |
于宏洲, 金森, 邸雪颖. 以小时为步长的大兴安岭兴安落叶松林地表可燃物含水率预测模型. 应用生态学报, 2013, 24 (6): 1565- 1571. | |
Yu H Z , Jin S , Di X Y . Prediction models for ground surface fuels moisture content of Larix gmelinii stand in Daxing'anling of China based on one-hour time step. Chinese Journal of Applied Ecology, 2013, 24 (6): 1565- 1571. | |
于宏洲, 舒立福, 邓继峰, 等. 以小时为步长的大兴安岭典型林分地表死可燃物含水率模型预测及外推精度. 应用生态学报, 2018, 29 (12): 71- 80. | |
Yu H Z , Shu L F , Deng J F , et al. Prediction models and the extrapolation effects for water content of surface dead fuels in the typical stand of the Great Xing'an Mountains of China by one-hour time step. Chinese Journal of Applied Ecology, 2018, 29 (12): 71- 80. | |
张大明, 杨雨春, 张维胜, 等. 可燃物含水率与气象因子相关关系预测模型的研究. 吉林林业科技, 2010, 39 (3): 27- 30.
doi: 10.3969/j.issn.1005-7129.2010.03.009 |
|
Zhang D M , Yang Y C , Zhang W S , et al. Research on the prediction model of relationship between combustibles moisture and meteorological factors. Journal of Jilin Forestry Science and Technology, 2010, 39 (3): 27- 30. | |
张恒, 董川成, 牛屾, 等. 不同采样方法对细小可燃物含水率预测模型精度的影响. 中南林业科技大学学报, 2018, 38 (5): 33- 39. | |
Zhang H , Dong C C , Niu S , et al. Effects of different sampling methods on forecast model accuracy of predicting fuels in forests in Pangu forest farm. Journal of Central South University of Forestry & Technology, 2018, 38 (5): 33- 39. | |
张恒, 金森, 张运林, 等. 气象法预测盘古林场可燃物含水率的外推精度. 中南林业科技大学学报, 2016, 36 (12): 61- 67. | |
Zhang H , Jin S , Zhang Y L , et al. Meteorological elements regression method is used to predict Pangu Forest Farm extrapolation accuracy analysis of fuel moisture content. Journal of Central South University of Forestry & Technology, 2016, 36 (12): 61- 67. | |
张吉利. 加格达奇和抚远可燃物湿度码及含水率动态研究. 哈尔滨: 东北林业大学博士学位论文, 2018. | |
Zhang J L . Study on the fuel moisture codes and dynamic of fuel moisture content in Jiagedaqi and Fuyuan. Harbin: PhD thesis of Northeast Forestry University., 2018. | |
张思玉, 蔡金榜, 陈细目. 杉木幼林地表可燃物含水率对主要火环境因子的响应模型. 浙江农林大学学报, 2006, 23 (4): 439- 444.
doi: 10.3969/j.issn.2095-0756.2006.04.017 |
|
Zhang S Y , Cai J B , Chen X M . Response models on the moisture change of surface fuel to fire environment in Cunninghamia lanceolata young plantation. Journal of Zhejiang Forestry College, 2006, 23 (4): 439- 444. | |
张运林, 张恒, 金森. 季节和降雨对细小可燃物含水率预测模型精度的影响. 中南林业科技大学学报, 2015, 35 (8): 5- 12. | |
Zhang Y L , Zhang H , Jin S . Effects of season change and rainfall on forecast model accuracy of predicting fine fuels in forests in Pangu Forest Farm. Journal of Central South University of Forestry & Technology, 2015, 35 (8): 5- 12. | |
Alen S , Wendy R A , Matthews S , et al. An analysis of the effect of aspect and vegetation type on fine fuel moisture content in eucalypt forest. International Journal of Wildland Fire, 2018, 27 (3): 190- 202.
doi: 10.1071/WF17049 |
|
Alves M V G , Batista A C , Soares R V , et al. Fuel moisture sampling and modeling in Pinus elliottii Engelm. plantations based on weather conditions in Paraná-Brazil. iForest-Biogeosciences & Forestry, 2009, 2 (3): 99- 103. | |
Anderson H E, Mutch R W, Schuette R D. 1978. Timelag and equilibrium moisture content of ponderosa pine needles. Ogden, Utah: Intermountain Forest and Range Experiment Station, Forest Service, U. S. Dept. of Agriculture. | |
Baeza M J , Luí s M . Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk. Journal of Environmental Management, 2002, 65 (2): 199- 208. | |
Bilgili E , Coskuner K A , Usta Y , et al. Modeling surface fuels moisture content in Pinus brutia stands. Journal of Forestry Research, 2019, 30, 577- 587.
doi: 10.1007/s11676-018-0702-x |
|
Bradstock R A . A biogeographic model of fire regimes in Australia: current and future implications. Global Ecology and Biogeography, 2010, 19 (2): 145- 158.
doi: 10.1111/j.1466-8238.2009.00512.x |
|
Byram G M , Jemison G M . Solar radiation and forest fuel moisture. Journal of Agricultural Research, 1943, 67 (4): 149- 176. | |
Cai L , He H S , Wu Z , et al. Development of standard fuel models in boreal forests of Northeast China through calibration and validation. PLoS ONE, 2014, 9 (4): 40- 43. | |
Catchpole E A , Anderson W , Viney N R , et al. Estimating fuel response time and predicting fuel moisture content from field data. International Journal of Wildland Fire, 2001, 10 (2): 215- 222.
doi: 10.1071/WF01011 |
|
Cawson J G , Duff T J . Forest fuel bed ignitability under marginal fire weather conditions in eucalyptus forests. International Journal of Wildland Fire, 2019, 28 (3): 198- 204.
doi: 10.1071/WF18070 |
|
Ferguson S A , Ruthford J E , Mckay S J , et al. Measuring moisture dynamics to predict fire severity in Longleaf Pine forests. International Journal of Wildland Fire, 2002, 11 (4): 267- 279.
doi: 10.1071/WF02010 |
|
Flannigan M , Cantin A S , Groot W D , et al. Global wildland fire season severity in the 21st century. Forest Ecology and Management, 2013, 294, 54- 61.
doi: 10.1016/j.foreco.2012.10.022 |
|
Fosberg M A , Lancaster J W , Schroeder M J . Fuel moisture response-drying relationships under standard and field conditions. Forest Science, 1970, 16 (1): 121- 128. | |
Gillett N P . Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 2004, 31 (18): L18211.
doi: 10.1029/2004GL020876 |
|
Holden Z A , Jolly W M . Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wild land fire management decision support. Forest Ecology and Management, 2011, 262 (12): 2133- 2141.
doi: 10.1016/j.foreco.2011.08.002 |
|
Hu H Q , Lu X , Sun L , et al. Dynamics and prediction models of ground surface dead fuel moisture content for typical stands in Great Xing'an Mountains, northeast China. Chinese Journal of Applied Ecology, 2016, 27 (7): 2212- 2224. | |
Jemison G M . Influence of weather factors on moisture content of light fuels in forests of the northern Rocky Mountains. Journal of Agricultural Research, 1935, 51 (10): 885- 906. | |
Jolly W M , Cochrane M A , Freeborn P H , et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 2015, 6, 7537.
doi: 10.1038/ncomms8537 |
|
Lin C C . Modeling fine dead fuel moisture in Taiwan red pine forests. Taiwan Journal of Forest Science, 2004, 19 (1): 27- 32. | |
Marsden-Smedley J B, Catchpole W R. 1995. Fire behaviour modelling in Tasmanian Buttongrass Moorlands. Ⅰ. Fuel characteristics. International Journal of Wildland Fire, 5(4): 215-228. | |
Matthews S . A process-based model of fine fuel moisture. International Journal of Wildland Fire, 2006, 15 (2): 155- 168.
doi: 10.1071/WF05063 |
|
Matthews S . Dead fuel moisture research: 1991-2012. International Journal of Wildland Fire, 2013, 23 (1): 78- 92. | |
Mccammon B P . Snowpack influences on dead fuel moisture. Forest Science, 1976, 22 (3): 323- 328. | |
Moritz M A , Batllori E , Bradstock R A , et al. Learning to coexist with wildfire. Nature, 2014, 515 (7525): 58- 66.
doi: 10.1038/nature13946 |
|
Müller D , Leitao P J , Sikor T . Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agricultural Systems, 2013, 117, 66- 77.
doi: 10.1016/j.agsy.2012.12.010 |
|
Nelson J R , Ralph M . A method for describing equilibrium moisture content of forest fuels. Canadian Journal of Forest Research, 1984, 14 (4): 597- 600.
doi: 10.1139/x84-108 |
|
Paltridge G W , Barber J . Monitoring grassland dryness and fire potential in Australia with NOAA/AVHRR data. Remote Sensing of Environment, 1988, 25 (3): 381- 394.
doi: 10.1016/0034-4257(88)90110-1 |
|
Parisien M , Parks S A , Krawchuk M A , et al. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005. Ecological Applications, 2011, 21 (3): 789- 805.
doi: 10.1890/10-0326.1 |
|
Pausas J G , Keeley J E . A burning story: the role of fire in the history of life. BioScience, 2009, 59 (7): 593- 601.
doi: 10.1525/bio.2009.59.7.10 |
|
Pittman S J , Costa B M , Battista T A . Using lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. Journal of Coastal Research, 2009, 25 (6): 27- 38. | |
Pook E , Gill A . Variation of live and dead fine fuel moisture in Pinus radiata plantations of the Australian-Capital-Territory. International Journal of Wildland Fire, 1993, 3 (3): 155- 168.
doi: 10.1071/WF9930155 |
|
Riley K L , Loehman R A , Reinhardt E . Wildland fire emissions, carbon, and climate: Seeing the forest and the trees —A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems. Forest Ecology & Management, 2014, 317 (2): 9- 19. | |
Romps D M , Seeley J T , Vollaro D , et al. Projected increase in lightning strikes in the United States due to global warming. Science, 2014, 346 (6211): 851- 854.
doi: 10.1126/science.1259100 |
|
Ruiz González A D, Vega Hidalgo J A, Álvarez González J G. 2009. Construction of empirical models for predicting Pinus sp. dead fine fuel moisture in NW Spain. Ⅰ: Response to changes in temperature and relative humidity. International Journal of Wildland Fire, 18(1): 71-83. | |
Schunk C , Leuchner M , Menzel A . Evaluation of a system for automatic dead fine fuel moisture measurements. Imprensa da Universidade de Coimbra, 2014, | |
Sharples J J , Mcrae R H D , Weber R O , et al. A simple index for assessing fuel moisture content. Environmental Modelling and Software, 2009, 24 (5): 637- 646.
doi: 10.1016/j.envsoft.2008.10.012 |
|
Sharples J J , Mcrae R H D . Evaluation of a very simple model for predicting the moisture content of eucalypt litter. International Journal of Wildland Fire, 2011, 20 (8): 1000- 1005.
doi: 10.1071/WF11006 |
|
Simard A J. 1968. The moisture content of forest fuels—a review of the basis concepts. Canadian Department of Forest and Rural Development, Forest Fire Research Institute, Information Report FF-X-14. Ottawa, Ontario, 47. | |
Slijepcevic A , Anderson W R , Matthews S , et al. Evaluating models to predict daily fine fuel moisture content in eucalypt forest. Forest Ecology and Management, 2015, 335 (335): 261- 269. | |
Sneeuwjagt R J , Peet G B . Forest fire behaviour tables for western Australia. Australia-Department of Conservation and Land Management, 1985, | |
Stojanova D, Panov P, Kobler A, et al. 2006. Learning to predict forest fires with different data mining techniques. 9th International Multiconference Information Society(IS 2006), Ljubljana, Slovenia. | |
Titus S J , Woodard P M , Johnson A F . Sampling intensity for estimating fuel moisture content in Lodgepole Pine and White Spruce trees. International Journal of Wildland Fire, 1992, 2 (1): 1- 6.
doi: 10.1071/WF9920001 |
|
Toomey M , Vierling L A . Multispectral remote sensing of landscape level foliar moisture: techniques and applications for forest ecosystem monitoring. Canadian Journal of Forest Research, 2005, 35 (5): 1087- 1097.
doi: 10.1139/x05-043 |
|
Van Wagner C E, Petawawa W, Station F E. 1977. A method of computing fine fuel moisture content throughout the diurnal cycle. Environment Canada, Canadian Forestry Service, Petawawa Forest Experiment Station, Chalk River, Ontario. Information Report PS-X-69. | |
Van Wagner C E . Equilibrium moisture contents of some fine forest fuels in eastern Canada. Information Report Petawawa Forest Experiment Station, 1972, | |
Van Wagner C E . Development and structure of the Canadian forest fire weather index system. Canadian Forest Service, Information Report 35, 1987, | |
Viney N R . A review of fine fuel moisture modelling. International Journal of Wildland Fire, 1991, 1 (4): 215- 234.
doi: 10.1071/WF9910215 |
|
Viney N R . Moisture diffusivity in forest fuels. International Journal of Wildland Fire, 1992, 2 (4): 161- 168.
doi: 10.1071/WF9920161 |
|
Wehner M, Arnold J, Knutson T, et al. 2017. Droughts, floods, and wildfires//Climate Science Special Report: Fourth National Climate Assessment. Volume Ⅰ. | |
Weisberg P J , Shandra O , Becker M E . Landscape influences on recent timberline shifts in the carpathian mountains: Abiotic Influences Modulate Effects of Land-Use Change. Arctic, Antarctic, and Alpine Research, 2013, 45 (3): 404- 414.
doi: 10.1657/1938-4246-45.3.404 |
|
Williams A P , Seager R , Macalady A K , et al. Characteristics of forest surface fuel moisture contents and their relationships with environmental factors in Wuyi Mountain scenery district. Chinese Journal of Applied and Environmental Biology, 2018, 24 (1): 14- 26. | |
Yan S X , Liu W , Lin X . Characteristics of forest surface fuel moisture contents and their relationships with environmental factors in Wuyi Mountain scenery district. Chinese Journal of Applied and Environmental Biology, 2018, 24 (1): 146- 154. | |
Yang X G , Yu Y , Hu H Q , et al. Moisture content estimation of forest litter based on remote sensing data. Environmental Monitoring and Assessment, 2018, 190, 421.
doi: 10.1007/s10661-018-6792-2 |
|
Yebra M , Chuvieco E , Riaño D . Investigation of a method to estimate live fuel moisture content from satellite measurements in fire risk assessment. Forest Ecology and Management, 2006, 234 (supp): S32. | |
Yebra M , Chuvieco E , Riaño D . Estimation of live fuel moisture content from MODIS images for fire risk assessment. Agricultural and Forest Meteorology, 2008, 148 (4): 523- 536.
doi: 10.1016/j.agrformet.2007.12.005 |
|
Zhong Q H , Xing L G . Dynamic models of moisture content of forest fuels. Journal of Forestry Research, 1995, 6 (1): 18- 22. |
[1] | 孙思琦,瓮岳太,邸雪颖,刘志华,杨光. 纤维素高效降解真菌的筛选及其降解森林地表可燃物的效果[J]. 林业科学, 2020, 56(8): 89-97. |
[2] | 张恒,甄雅星,李佳艳,薛江,张秋良. 内蒙古大兴安岭典型乔灌树种及其地表死可燃物热解特性[J]. 林业科学, 2020, 56(7): 104-114. |
[3] | 黄剑坚, 刘素青, 李际平, 韩维栋. 木榄胎生繁殖体产量预测模型[J]. 林业科学, 2013, 49(7): 163-169. |
[4] | 于宏洲, 金森, 邸雪颖. 以时为步长的塔河林业局白桦林地表死可燃物含水率预测方法[J]. 林业科学, 2013, 49(12): 108-113. |
[5] | 朱宇, 李成德, 豆晓洁, 冯琛, 张岳峰, 吴广超, 王焱. 舞毒蛾在上海市的适生性分析[J]. 林业科学, 2013, 49(11): 109-115. |
[6] | 金琳;刘晓东;张永福. 森林可燃物调控技术方法研究进展[J]. 林业科学, 2012, 48(2): 155-161. |
[7] | 杨瑶君;秦虹;邓光明;汪淑芳;廖莉容;刘超;李仕贵. 长足大竹象幼虫种群动态及其气候预测模型[J]. 林业科学, 2011, 47(9): 82-87. |
[8] | 梁瀛;张思玉;努尔古丽;张毓涛;程平. 天山中部林区主要树种理化性质及燃烧性分析[J]. 林业科学, 2011, 47(12): 101-105. |
[9] | 胡海清 王广宇 孙龙. 小兴安岭主要森林可燃物类型地被物燃烧烟气分析*[J]. 林业科学, 2009, 12(5): 109-114. |
[10] | 王秋华 舒立福 戴兴安 王明玉 田晓瑞. 冰雪灾害对南方森林可燃物及火行为的影响[J]. 林业科学, 2008, 44(11): 171-176. |
[11] | 胡海清 刘菲. 30种树叶的点燃含水率与蔓延含水率[J]. 林业科学, 2006, 42(11): 81-86. |
[12] | 舒立福 王明玉 田晓瑞 李忠琦 肖永军. 我国大兴安岭呼中林区雷击火发生火环境研究[J]. 林业科学, 2003, 39(6): 94-99. |
[13] | 徐有明 林汉 江泽慧 马伟 羊荣伟. 橡胶树生长轮宽度、木材密度变异及其预测模型的研究[J]. 林业科学, 2002, 38(1): 95-102. |
[14] | 林开敏 洪伟 俞新妥 黄宝龙. 杉木人工林林下植物生物量的动态特征和预测模型[J]. 林业科学, 2001, 37(zk): 99-105. |
[15] | 张智光,陶冶,叶超飞. 森林火灾受害面积的灰色预测模型的研究[J]. 林业科学, 1999, 35(5): 124-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||