|  | 郝勇, 商庆园, 饶敏, 等.  木材种类的近红外光谱和模式识别. 光谱学与光谱分析, 2019, 39 (3): 705- 710. | 
																													
																						|  | Hao Y ,  Shang Q Y ,  Rao M , et al.  Identification of wood species based on near infrared spectroscopy and pattern recognition method. Spectroscopy and Spectral Analysis, 2019, 39 (3): 705- 710. | 
																													
																						|  | 高雷阜, 佟盼.  融合改进遗传和人工蜂群的SVM参数优化算法. 计算机工程与应用, 2016a, 52 (18): 36- 39. | 
																													
																						|  | Gao L F ,  Tong P .  Algorithm of SVM parameter optimization by combining improved genetic and artificial bee colony. Computer Engineering and Applications, 2016a, 52 (18): 36- 39. | 
																													
																						|  | 高雷阜, 高晶, 赵世杰.  人工蜂群算法优化SVR的预测模型. 计算机工程与应用, 2016b, 52 (11): 55- 59. | 
																													
																						|  | Gao L F ,  Gao J ,  Zhao S J .  Forecast model of SVR optimized by artificial bee colony algorithm. Computer Engineering and Applications, 2016b, 52 (11): 55- 59. | 
																													
																						|  | 李璟民, 郭敏.  人工蜂群算法优化支持向量机的分类研究. 计算机工程与应用, 2015, 51 (2): 151- 155. | 
																													
																						|  | Li J M ,  Guo M .  Study on classification of artificial bee colony algorithm to optimization of support vector machine. Computer Engineering and Applications, 2015, 51 (2): 151- 155. | 
																													
																						|  | 刘渝根, 陈超.  基于人工蜂群算法优化支持向量机的接地网腐蚀速率预测模型. 电力自动化设备, 2019, 39 (5): 182- 186. | 
																													
																						|  | Liu Y G ,  Chen C .  Corrosion rate prediction model of grounding grid based on support vector machine optimized by artificial bee colony algorithm. Electric Power Automation Equipment, 2019, 39 (5): 182- 186. | 
																													
																						|  | 刘镇波, 刘一星, 于海鹏, 等.  实木板材的动态弹性模量检测. 林业科学, 2005, 41 (6): 126- 131. | 
																													
																						|  | Liu Z B ,  Liu Y X ,  Yu H P , et al.  Research on the dynamic modulus of elasticity measurement of lumber. Scientia Silvae Sinicae, 2005, 41 (6): 126- 131. | 
																													
																						|  | 毛莎莎, 曾明, 何绍兰, 等.  近红外光谱技术在水果成熟期预测中的应用. 亚热带植物科学, 2010, 39 (1): 82- 87, 96. | 
																													
																						|  | Mao S S ,  Zeng M ,  He S L , et al.  Application of near infrared spectra(NIRS) technology in prediction of maturity stage of fruit. Subtropical Plant Science, 2010, 39 (1): 82- 87, 96. | 
																													
																						|  | 谭念, 孙一丹, 王学顺, 等.  基于主成分分析和支持向量机的木材近红外光谱树种识别研究. 光谱学与光谱分析, 2017, 37 (11): 3370- 3374. | 
																													
																						|  | Tan N ,  Sun Y D ,  Wang X S , et al.  Research on near infrared spectrum with principal component analysis and support vector machine for timber identification. Spectroscopy and Spectral Analysis, 2017, 37 (11): 3370- 3374. | 
																													
																						|  | 谭念, 王学顺, 黄安民, 等.  基于灰狼算法SVM的NIR杉木密度预测. 林业科学, 2018, 54 (12): 137- 141. | 
																													
																						|  | Tan N ,  Wang X S ,  Huang A M , et al.  Wood density prediction of Cunninghamia lanceolata based on gray wolf algorithm SVM and NIR. Scientia Silvae Sinicae, 2018, 54 (12): 137- 141. | 
																													
																						|  | 王晓旭, 黄安民, 杨忠, 等.  近红外光谱用于杉木木材强度分等的研究. 光谱学与光谱分析, 2011, 31 (4): 975- 978. | 
																													
																						|  | Wang X X ,  Huang A M ,  Yang Z , et al.  Study on the wood grading by near infrared spectroscopy. Spectroscopy and Spectral Analysis, 2011, 31 (4): 975- 978. | 
																													
																						|  | 王学顺. 2010. 近红外光谱信息提取及其在木材材性分析中的应用研究. 哈尔滨: 东北林业大学博士学位论文. | 
																													
																						|  | Wang X S. 2010. A study of NIR information extraction and its application in wood property analysis. Harbin: PhD thesis of Northeast Forestry University.[in Chinese] | 
																													
																						|  | 汪紫阳, 尹世逵, 李春旭, 等.  可见/近红外光谱技术识别树叶树种的研究. 西北林学院学报, 2019, 34 (1): 229- 236, 260. | 
																													
																						|  | Wang Z Y ,  Yin S K ,  Li C X , et al.  Identification of tree leaf and species by Vis/NIR spectroscopy. Journal of Northwest Forestry University, 2019, 34 (1): 229- 236, 260. | 
																													
																						|  | 徐峰, 刘云飞, 潘惠新, 等.  基于声-超声技术的木材弹性模量测定方法研究. 振动与冲击, 2014, 33 (4): 210- 214. | 
																													
																						|  | Xu F ,  Liu Y F ,  Pan H X , et al.  Wood elastic modulus determination based on acoustic-ultrasonic technique. Journal of Vibration and Shock, 2014, 33 (4): 210- 214. | 
																													
																						|  | 杨双艳, 杨紫刚, 张四伟, 等.  基于近红外光谱和PSO-SVM算法的烟叶自动分级方法. 贵州农业科学, 2018, 46 (12): 141- 144. | 
																													
																						|  | Yang S Y ,  Yang Z G ,  Zhang S W , et al.  Automatic grading method of tobacco leaves based on NIR technology and PSO-SVM algorithm. Guizhou Agricultural Sciences, 2018, 46 (12): 141- 144. | 
																													
																						|  | 于仕兴. 2014. 基于智能算法的支持向量机结合木材近红外光谱应用研究. 北京: 北京林业大学硕士学位论文. | 
																													
																						|  | Yu S X. 2014. Support vector machine(SVM)based on intelligent algorithm combined with wood NIR application research. Beijing: MS thesis of Beijing Forestry University.[in Chinese] | 
																													
																						|  | 张建强, 刘维涓, 侯英.  基于稀疏表示分类和近红外光谱的烟叶自动分级研究. 光谱学与光谱分析, 2018, 38 (S1): 23- 24. | 
																													
																						|  | Zhang J Q ,  Liu W J ,  Hou Y .  Automatic discriminate the classes of tobacco leaves based on near-infrared spectroscopy and sparse representation classification algorithm. Spectroscopy and Spectral Analysis, 2018, 38 (S1): 23- 24. | 
																													
																						|  | 赵荣军, 霍小梅, 张黎.  利用近红外光谱技术预测粗皮桉木材弹性模量. 光谱学与光谱分析, 2009, 29 (9): 2392- 2395. | 
																													
																						|  | Zhao R J ,  Huo X M ,  Zhang L .  Estimation of modulus of elasticity of Eucalyptus pellita wood by near infrared spectroscopy. Spectroscopy and Spectral Analysis, 2009, 29 (9): 2392- 2395. | 
																													
																						|  | 周志茹, 赵茂程, 王正.  意杨木材弹性模量3种方法检测的比较. 福建林学院学报, 2014, 34 (4): 368- 373. | 
																													
																						|  | Zhou Z R ,  Zhao M C ,  Wang Z .  Comparative study of modulus of elasticity of Populus euramericana lumber with three nondestructive methods. Journal of Forest and Environment, 2014, 34 (4): 368- 373. | 
																													
																						|  | Brajevic I ,  Tuba M .  An upgraded artificial bee colony(ABC)algorithm for constrained optimization problems. Journal of Intelligent Manufacturing, 2013, 24 (4): 729- 740. | 
																													
																						|  | Djemai S ,  Brahmi B ,  Bibi M O .  A primal-dual method for SVM training. Neurocomputing, 2016, 211, 34- 40. | 
																													
																						|  | Jones P D ,  Schimleck L R ,  Peter G F , et al.  Nondestructive estimation of wood chemical composition of sections of radial wood strips by near infrared spectroscopy. Wood Science & Technology, 2006, 40 (8): 709- 720. | 
																													
																						|  | Karaboga D. 2005. An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department. | 
																													
																						|  | Kelley S S ,  Rials T G ,  Groom L H , et al.  Use of near infrared spectroscopy to predict the mechanical properties of six softwoods. Holzforschung, 2004, 58 (3): 252- 260. | 
																													
																						|  | Özparpucu M ,  Gierlinger N ,  Cesarino I , et al.  Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions. Journal of Experimental Botany, 2019, 70 (15): 4039- 4047. | 
																													
																						|  | Unler A ,  Murat A ,  Chinnam R B .  mr2 PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Information Sciences, 2011, 181 (20): 4625- 4641. |