林业科学 ›› 2020, Vol. 56 ›› Issue (7): 151-162.doi: 10.11707/j.1001-7488.20200716
韩大校1,韦睿1,王晓红1,丛日征1,邸雪颖2,杨光2,蔡慧颖2,张吉利1,*
收稿日期:
2019-01-18
出版日期:
2020-07-25
发布日期:
2020-08-11
通讯作者:
张吉利
基金资助:
Daxiao Han1,Rui Wei1,Xiaohong Wang1,Rizheng Cong1,Xueying Di2,Guang Yang2,Huiying Cai2,Jili Zhang1,*
Received:
2019-01-18
Online:
2020-07-25
Published:
2020-08-11
Contact:
Jili Zhang
摘要:
林火导致树木死亡的机制对计划烧除、火灾损失评估和火烧迹地恢复等具有重要指导意义,但目前对林火的作用途径和树木死亡的过程仍不甚清楚。本文将林火行为与树冠、树干和根系的受热过程联系在一起,分析火后树木死亡的潜在生物学机制和影响因素,总结树木烧伤程度的评判方法和死亡率预测模型。火后树木的直接死亡主要取决于叶片和分生组织(芽和形成层)的烧伤情况,而树木受热的边界条件和局部传热过程的精确量化是评判和预测树木烧伤程度的关键依据。由树冠光合速率和韧皮部传导能力下降共同促成的养分胁迫以及由导管(或管胞)气穴栓塞和软化形变导致的木质部水分运输失败都是导致火后树木死亡的潜在原因,而后者更倾向于在短期内造成树木死亡。气孔的导度和对饱和水气压差骤变的敏感性可决定叶片在林火发生时的响应能力,而叶片单位面积的光合速率会因林火矿化作用提供的养分而短暂上升。激素、酚类、萜烯类和乙醇等代谢产物是反映树木延迟死亡的关键生化指标,同时也与火后病虫害的侵染密切相关。树冠的烧伤程度是短期内评估树木死亡概率及恢复情况的可靠参数,次年萌芽和展叶情况应作为补充参考。独立指示变量、综合评级指标和统计经验模型都是目前评估和预测火后树木死亡率最可行且有效的途径,而基于过程的生物物理学模型是未来的研究趋势。此外,本文还对该研究领域仍存在的问题进行总结并提出相应的意见和建议,可为火后树木死亡的相关研究提供参考。
中图分类号:
韩大校,韦睿,王晓红,丛日征,邸雪颖,杨光,蔡慧颖,张吉利. 林火导致树木死亡的作用机制和影响因素的研究进展[J]. 林业科学, 2020, 56(7): 151-162.
Daxiao Han,Rui Wei,Xiaohong Wang,Rizheng Cong,Xueying Di,Guang Yang,Huiying Cai,Jili Zhang. Progress on the Mechanisms and Influencing Factors of Tree Mortality Caused by Forest Fire: A Review[J]. Scientia Silvae Sinicae, 2020, 56(7): 151-162.
楚旭, 邸雪颖, 杨光. 林火对兴安落叶松根生物量及碳氮养分浓度的影响. 北京林业大学学报, 2013. 35 (2): 10- 16. | |
Chu X , Di X Y , Yang G . Impacts of forest fire on root biomass, carbon and nitrogen concentration of Larix gmelinii. Journal of Beijing Forestry University, 2013. 35 (2): 10- 16. | |
李世友, 杨孝淋, 李生红, 等. 树皮的阻燃性. 林业科学, 2009. 45 (3): 85- 89. | |
Li S Y , Yang X L , Li S H , et al. Flame retardancy of bark. Scientia Silvae Sinicae, 2009. 45 (3): 85- 89. | |
舒立福, 田晓瑞, 寇晓军. 计划烧除的应用与研究. 火灾科学, 1998. 7 (3): 61- 67. | |
Shu L F , Tian X R , Kou X J . Appliaction and research of prescribed burning and controlled burning. Fire Safety Science, 1998. 7 (3): 61- 67. | |
田晓瑞, 舒立福, 乔启宇, 等. 南方林区防火树种的筛选研究. 北京林业大学学报, 2001. 23 (5): 43- 47. | |
Tian X R , Shu L F , Qiao Q Y , et al. Research on fire-resistance tree species in south China. Journal of Beijing Forestry University, 2001. 23 (5): 43- 47. | |
王立夫, 杜嘉林, 田力范. 计划烧除技术规范化管理的探讨. 森林防火, 2006. (4): 22- 24. | |
Wang L F , Lin J L , Tian L F . Discussion on standardized management of planned burning technology. Forest Fire Prevention, 2006. (4): 22- 24. | |
王荣, 胡海清. 东北地区5种阔叶树苗木对火烧的生理响应. 应用生态学报, 2012. 32 (8): 2303- 2310. | |
Wang R , Hu H Q . Physiological responses of five deciduous broad-leaved tree seedlings in the northeast area of China to burning. Acta Ecologica Sinica, 2012. 32 (8): 2303- 2310. | |
Alessio G A , De Lillis M , Fanelli M , et al. Direct and indirect impacts of fire on isoprenoid emissions from Mediterranean vegetation. Functional Ecology, 2004. 18 (3): 357- 364. | |
Alexander M E , Cruz M G . Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height. International Journal of Wildland Fire, 2012. 26 (4): 95- 113. | |
Alexou M , Dimitrakopoulos A P . Early physiological consequences of fire as an abiotic stressor in metabolic source and sink of young Brutian pine(Pinus brutia Ten.). Tree Physiology, 2014. 34 (12): 1388- 1398. | |
Alonso M , Rozados M J , Vega J A , et al. Biochemical responses of Pinus pinaster trees to fire-induced trunk girdling and crown scorch: secondary metabolites and pigments as needle chemical indicators. Journal of Chemical Ecology, 2002. 28 (4): 687- 700. | |
Angers V A , Gauthier S , Drapeau P , et al. Tree mortality and snag dynamics in North American boreal tree species after a wildfire: a long-term study. International Journal of Wildland Fire, 2011. 20 (6): 751- 763. | |
Bär A , Nardini A , Mayr S . Post-fire effects in xylem hydraulics of Picea abies, Pinus sylvestris and Fagus sylvatica. New Phytologist, 2018. 217 (4): 1484- 1493. | |
Battipaglia G , Savi T , Ascoli D , et al. Effects of prescribed burning on ecophysiological, anatomical and stem hydraulic properties in Pinus pinea L. Tree Physiology, 2016. 36 (8): 1019- 1031. | |
Bova A S , Dickinson M B . An inverse method to estimate stem surface heat flux in wildland fires. International Journal of Wildland Fire, 2009. 18 (6): 711- 721. | |
Bova A S , Dickinson M B . Linking surface-fire behavior, stem heating, and tissue necrosis. Canadian Journal of Forest Research, 2005. 35 (4): 814- 822. | |
Brando P M , Nepstad D C , Balch J K , et al. Fire-induced tree mortality in a neotropical forest: The roles of bark traits, tree size, wood density and fire behavior. Global Change Biology, 2012. 18 (2): 630- 641. | |
Busse M D , Shestak C J , Hubbert K R , et al. Soil physical properties regulate lethal heating during burning of woody residues. Soil Science Society of America Journal, 2010. 74 (3): 947- 955. | |
Butler B W , Dickinson M B . Tree injury and mortality in fires: Developing process-based models. Fire Ecology, 2010. 6 (1): 55- 79. | |
Cannac M , Pasqualini V , Barboni T , et al. Phenolic compounds of Pinus laricio needles: A bioindicator of the effects of prescribed burning in function of season. Science of the Total Environment, 2009. 407 (15): 4542- 4548. | |
Cannac M , Ferrat L , Barboni T , et al. Identification of flavonoids in Pinus laricio needles and changes occurring after prescribed burning. Chemoecology, 2011. 21 (1): 9- 17. | |
Carlo N J , Renninger H J , Clark K L , et al. Impacts of prescribed fire on Pinus rigida Mill. in upland forests of the Atlantic Coastal Plain. Tree Physiology, 2016. 36 (8): 967- 982. | |
Catry F X , Rego F , Moreira F , et al. Post-fire tree mortality in mixed forests of central Portugal. Forest Ecology and Management, 2010. 260 (7): 1184- 1192. | |
Chatziefstratiou E K , Gil B , Bova A S , et al. FireStem2D — A two-dimensional heat transfer model for simulating tree stem injury in fires. PLoS ONE, 2013. 8 (7): 1- 14. | |
Cruz M G , Butler B W , Alexander M E , et al. Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization. International Journal of Wildland Fire, 2006. 15 (1): 61- 72. | |
Dickinson M B , Johnson E A . Temperature-dependent rate models of vascular cambium cell mortality. Canadian Journal of Forest Research, 2004. 34 (3): 546- 559. | |
Ducrey M , Duhoux F , Huc R , et al. The ecophysiological and growth responses of Aleppo pine(Pinus halepensis) to controlled heating applied to the base of the trunk. Canadian Journal of Forest Research, 1996. 26 (8): 1366- 1374. | |
Enninful E K , Torvi D A . A variable property heat transfer model for predicting soil temperature profiles during simulated wildland fire conditions. International Journal of Wildland Fire, 2008. 17 (2): 205- 213. | |
Escandón M , Cañal M J , Pascual J , et al. Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata. Tree Physiology, 2016. 36 (1): 63- 77. | |
Fowler J F, Sieg C H. 2004. Post-fire mortality of ponderosa pine and Douglas-fir: a review of methods to predict tree death. General technical report RMRS-GTR-132. USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1-25. | |
Fowler J F , Sieg C , Mcmilin J , et al. Development of post-fire crown damage mortality thresholds in ponderosa pine. International Journal of Wildland Fire, 2010. 19 (5): 583- 588. | |
Ganio L M , Progar R A . Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA. Forest Ecology and Management, 2017. 390 (2017): 47- 67. | |
Gutsell S L , Johnson E A . How fire scars are formed: Coupling a disturbance process to its ecological effect. Canadian Journal of Forest Research, 1996. 26 (2): 166- 174. | |
Hanson C T , North M P . Post-fire survival and flushing in three Sierra Nevada conifers with high initial crown scorch post-fire survival and flushing in three Sierra Nevada conifers with high initial crown scorch. International Journal of Wildland Fire, 2009. 18 (7): 857- 864. | |
Harrington M G . Duff mound consumption and cambium injury for centuries-old western larch from prescribed burning in western Montana. International Journal of Wildland Fire, 2013. 22 (3): 359- 367. | |
Harrington M G . Predicting pinus ponderosa mortality from dormant season and growing-season fire injury. International Journal of Wildland Fire, 1993. 3 (2): 65- 72. | |
Hart S C , Deluca T H , Newman G S , et al. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecology and Management, 2005. 220 (1-3): 166- 184. | |
Hood S M , Cluck D , Smith S L , et al. Using bark char codes to predict post-fire cambium mortality. Fire Ecology, 2008. 4 (1): 57- 73. | |
Hood S , Sala A . Ponderosa pine resin defenses and growth: Metrics matter. Tree Physiology, 2015. 35 (11): 1223- 1235. | |
Hood S , Sala A , Heyerdahl E K , et al. Low-severity fire increases tree defense against bark beetle attacks. Ecology, 2015. 96 (7): 1846- 1855. | |
Hood S M , Smith S L , Cluck D R . Predicting mortality for five California conifers following wildfire. Forest Ecology and Management, 2010. 260 (5): 750- 762. | |
Hood S M , Varner J M , Van Mantgem P , et al. Fire and tree death: Understanding and improving modeling of fire-induced tree mortality. Environmental Research Letters, 2018. 13 (2018): 113004. | |
Jones J L , Webb BW , Jimenez D , et al. Development of an advanced one-dimensional stem heating model for application in surface fires. Canadian Journal of Forest Research, 2004. 34 (1): 20- 30. | |
Jones J L , Webb B W , Butler B W , et al. Prediction and measurement of thermally induced cambial tissue necrosis in tree stems. International Journal of Wildland Fire, 2006. 15 (1): 3- 17. | |
Kane J M , Kolb T E . Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack. Oecologia, 2010. 164 (3): 601- 609. | |
Kavanagh K L , Dickinson M B , Bova A S . A way forward for fire-caused tree mortality prediction: Modeling a physiological consequence of fire. Fire Ecology, 2010. 6 (1): 80- 94. | |
Keeley J E . Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal of Wildland Fire, 2009. 18 (1): 116- 126. | |
Kelsey R G , Joseph G . Ethanol in ponderosa pine as an indicator of physiological injury from fire and its relationship to secondary beetles. Canadian Journal of Forest Research, 2003. 33 (5): 870- 884. | |
Kelsey R G , Westlind D J . Ethanol and primary attraction of red turpentine beetle in fire stressed ponderosa pine. Forest Ecology and Management, 2017a. 396 (2017): 44- 54. | |
Kelsey R G , Westlind D J . Physiological stress and ethanol accumulation in tree stems and woody tissues at sublethal temperatures from fire. BioScience, 2017b. 67 (5): 443- 451. | |
Keyser T L , Smith F W , Lentile L B , et al. Modeling post-fire mortality of ponderosa pine following a mixed-severity wildfire in the Black Hills: The role of tree morphology and direct fire effects. Forest Science, 2006. 52 (5): 530- 539. | |
Kremens R L , Smith A M S , Dickinson M B . Fire metrology: Current and future directions in physics-based measurements. Fire Ecology, 2010. 6 (1): 13- 35. | |
Kolb T E , Agee J K , Fulé , et al. Perpetuating old ponderosa pine. Forest Ecology and Management, 2007. 249 (3): 141- 157. | |
Lavoir A V , Ormeño E , Pasqualini V , et al. Does prescribed burning affect leaf secondary metabolites in pine stands?. Journal of Chemical Ecology, 2013. 39 (3): 398- 412. | |
Lawes M J , Richardson S J , Clarke P J , et al. Bark thickness does not explain the different susceptibility of Australian and New Zealand temperate rain forests to anthropogenic fire. Journal of Biogeography, 2014. 41 (8): 1467- 1477. | |
Lawes M J , Richards A , Dathe J , et al. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecology, 2011. 212 (12): 2057- 2069. | |
Lodge A G , Dickinson M B , Kavanagh K L . Xylem heating increases vulnerability to cavitation in longleaf pine. Environmental Research Letters, 2018. 13 (2018): 055007. | |
Martin R E . Thermal properties of bark. Forest Products Journal, 1963. 13 (10): 419- 426. | |
Massman W J , Frank J M , Mooney S J . Advancing investigation and physical modeling of first-order fire effects on soils. Fire Ecology, 2010. 6 (1): 36- 54. | |
Mchugh C W , Kolb T E , Wilson J L . Bark beetle attacks on ponderosa pine following fire in Northern Arizona. Environmental Entomology, 2003. 32 (3): 510- 522. | |
Michaletz S T , Johnson E A . A heat transfer model of crown scorch in forest fires. Canadian Journal of Forest Research, 2006. 36 (11): 2839- 2851. | |
Michaletz S T , Johnson E A . How forest fires kill trees: a review of the fundamental biophysical processes. Scandinavian Journal of Forest Research, 2007. 22 (6): 500- 515. | |
Michaletz S T , Johnson E A , Tyree M T . Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: Cavitation and deformation of xylem in forest fires. New Phytologist, 2012. 194 (1): 254- 263. | |
Michaletz S T , Johnson E A . Biophysical process model of tree mortality in surface fires. Canadian Journal of Forest Research, 2008. 38 (7): 2013- 2029. | |
Nolan R H , Mitchell P J , Bradstock R A , et al. Structural adjustments in resprouting trees drive differences in post-fire transpiration. Tree Physiology, 2014. 34 (2): 123- 136. | |
O'Brien J J , Hiers J K , Mitchell R J , et al. Acute physiological stress and mortality following fire in a long-unburned longleaf pine ecosystem. Fire Ecology, 2010. 6 (2): 1- 12. | |
O'Brien J J , Hiers J K , Varner J M , et al. Advances in mechanistic approaches to quantifying biophysical fire effects. Current Forestry Reports, 2018. 4 (4): 161- 177. | |
Odhiambo B , Meincken M , Seifert T . The protective role of bark against fire damage: A comparative study on selected introduced and indigenous tree species in the Western Cape, South Africa. Trees, 2014. 28 (2): 567- 567. | |
Owen S M , Sieg C H , Sánchez Meador A J , et al. Spatial patterns of ponderosa pine regeneration in high-severity burn patches. Forest Ecology and Management, 2017. 405 (2017): 134- 149. | |
Peterson D L , Ryan K C . Modeling post-fire conifer mortality for long-range planning. Environmental Management, 1986. 10 (6): 797- 808. | |
Reich P B , Abrams M D , Ellsworth D S , et al. Fire affects ecophysiology and community dynamics of central wisconsin oak forest regeneration. Ecology, 1990. 71 (6): 2179- 2190. | |
Ryan K C , Frandsen W H . Basal injury from smoldering fires in mature Pinus ponderosa Laws. International Journal of Wildland Fire, 1991. 1 (2): 107- 118. | |
Ryan K C , Peterson D L , Reinhardt E D . Modeling long-term fire-caused mortality of Douglas-fir. Forest Science, 1988. 34 (1): 190- 199. | |
Sala A , Peters G D , Mcintyre L R , et al. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season. Tree Physiology, 2005. 25 (3): 339- 348. | |
Schafer J L , Breslow B P , Hohmann M G , et al. Relative bark thickness is correlated with tree species distributions along a fire frequency gradient. Fire Ecology, 2015. 11 (1): 74- 87. | |
Schwilk D W , Knapp E E , Ferrenberg S M , et al. Tree mortality from fire and bark beetles following early and late season prescribed fires in a Sierra Nevada mixed-conifer forest. Forest Ecology and Management, 2006. 232 (1-3): 36- 45. | |
Scott D W, Schmitt C L, Spiegel L H. 2002. Factors affecting survival of fire injured trees: A rating system for determining relative probability of survival of conifers in the Blue and Wallowa Mountains. USDA Forest Service, Blue Mountains Pest Management Service Center, BMPMSC03-01. | |
Smith A M S , Sparks A M , Kolden C A , et al. Towards a new paradigm in fire severity research using dose-response experiments. International Journal of Wildland Fire, 2016. 25 (2): 158- 166. | |
Smith A M S , Talhelm A , Johnson D , et al. Effects of fire radiative energy density doses on Pinus contorta and Larix occidentalis seedling physiology and mortality. International Journal of Wildland Fire, 2017. 26 (1): 82- 94. | |
Stephens S L , McIver J D , Boerner R E J , et al. The effects of forest fuel-reduction treatments in the United States. Bioscience, 2012. 62 (6): 549- 60. | |
Swezy D M , Agee J K . Prescribed-fire effects on fine-root and tree mortality in old-growth ponderosa pine. Canadian Journal of Forest Research, 1991. 21 (5): 626- 634. | |
Travis Belote R , Larson A J , Dietz M S . Tree survival scales to community-level effects following mixed-severity fire in a mixed-conifer forest. Forest Ecology and Management, 2015. 353 (2015): 221- 231. | |
Valor T , Ormeño E , Casals P . Temporal effects of prescribed burning on terpene production in Mediterranean pines. Tree Physiology, 2017. 37 (12): 1622- 1636. | |
Vanderweide B L , Hartnett D C . Fire resistance of tree species explains historical gallery forest community composition. Forest Ecology and Management, 2011. 261 (9): 1530- 1538. | |
Varner J M , Putz F E , O'Brien J J , et al. Post-fire tree stress and growth following smoldering duff fires. Forest Ecology and Management, 2009. 258 (11): 2467- 2474. | |
Van Mantgem P , Falk D A , Williams E C , et al. Pre-fire drought and competition mediate post-fire conifer mortality in western U.S. National Parks. Ecological Applications, 2018. 28 (7): 1730- 1739. | |
Van Mantgem P , Schwartz M . Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions. Forest Ecology and Management, 2003. 178 (3): 341- 352. | |
Van Wagner C E . Height of crown scorch in forest fires. Canadian Journal of Forest Research, 1973. 3 (3): 373- 378. | |
Van Wagner C E . Conditions for the start and spread of crown fire. Canadian Journal of Forest Research, 1977. 7 (1): 23- 34. | |
Van Wagtendonk J W. 1983. Prescribed fire effects on forest understory mortality. In proceedings of the 7th conference of fire and forest meteorology, Fort Collins, Colorado, April 25-28, 1983. American Meteorological Society, Boston, Massachusetts, 136-138. | |
Wei R , Yang G , Zhang J , et al. The thermal insulation properties of oak(Quercus mongolica) bark and the applicability of stem heating models. International Journal of Wildland Fire, 2019. 28 (12): 969- 980. | |
West A G , Nel J A , Bond W J , et al. Experimental evidence for heat plume-induced cavitation and xylem deformation as a mechanism of rapid post-fire tree mortality. New Phytologist, 2016. 211 (3): 828- 838. | |
Woolley T , Shaw D C , Ganio L M , et al. A review of logistic regression models used to predict post-fire tree mortality of western North American conifers. International Journal of Wildland Fire, 2012. 21 (1): 1- 35. | |
Wright B R , Clarke P J . Relationships between soil temperatures and properties of fire in feathertop spinifex(Triodia schinzii(Henrard) Lazarides) sandridge desert in central Australia. Rangeland Journal, 2008. 30 (3): 317- 325. | |
Zeleznik J D , Dickmann D I . Effects of high temperatures on fine roots of mature red pine(Pinus resinosa) trees. Forest Ecology and Management, 2004. 199 (2): 395- 409. |
[1] | 范亚雄,陈尔学,李增元,赵磊,张王菲,金玉栋,蔡丽杰. 基于TanDEM-X相干系数的森林高度估测方法[J]. 林业科学, 2020, 56(6): 35-46. |
[2] | 张雅馨,刘霞,张博,谢屹. 自然保护区建立是否必然导致农户收入低——基于福建武夷山国家级自然保护区内外社区农户收入的实证研究[J]. 林业科学, 2020, 56(6): 165-178. |
[3] | 沈钱勇,汤孟平. 浙江省毛竹竹秆材积模型[J]. 林业科学, 2020, 56(5): 89-96. |
[4] | 杨春梅,曲文,蒋婷,刘九庆,马岩,缪骞,于文吉. 小径木半圆指接数学模型及出材理论[J]. 林业科学, 2020, 56(5): 143-149. |
[5] | 董利虎,刘永帅,宋博,周翼飞,李凤日. 立木含碳量估算方法比较[J]. 林业科学, 2020, 56(4): 46-54. |
[6] | 胡海清,罗碧珍,罗斯生,魏书精,王振师,李小川,刘菲. 林火干扰对森林生态系统碳库的影响研究进展[J]. 林业科学, 2020, 56(4): 160-169. |
[7] | 武金翠,周军,张宇,余晓燕,石雷,漆良华. 毛竹林固碳增汇价值的动态变化:以福建省为例[J]. 林业科学, 2020, 56(4): 181-187. |
[8] | 周律,欧光龙,王俊峰,胥辉. 基于空间回归模型的思茅松林生物量遥感估测及光饱和点确定[J]. 林业科学, 2020, 56(3): 38-47. |
[9] | 龙飞,沈月琴,祁慧博,刘梅娟. 基于企业减排需求的森林碳汇定价机制[J]. 林业科学, 2020, 56(2): 164-173. |
[10] | 陈栋,吴保国,王姗姗,苏晓慧,陈玉玲,李宜瑾. 面向人工林经营的模型库和方法库服务平台[J]. 林业科学, 2020, 56(1): 87-102. |
[11] | 韩新生, 王彦辉, 李振华, 王艳兵, 于澎涛, 熊伟. 六盘山半干旱区华北落叶松人工林林下日蒸散特征及其影响因子[J]. 林业科学, 2019, 55(9): 11-21. |
[12] | 施月园, 王彦君, 金光泽, 刘志理. 小兴安岭8种阔叶树在不同叶生长期的叶面积经验模型[J]. 林业科学, 2019, 55(9): 22-30. |
[13] | 陈东升, 李凤日, 孙晓梅, 张守攻. 基于节子分析技术构建落叶松人工林树冠基部高动态模型[J]. 林业科学, 2019, 55(9): 103-110. |
[14] | 王锋, 卢琦. 沙地樟子松散生单木的天然更新幼苗空间分布模型[J]. 林业科学, 2019, 55(8): 1-8. |
[15] | 王卫, 杨俊杰, 罗晓莹, 周长江, 陈世发, 杨志军, 侯荣丰, 陈再雄, 李永生. 基于Maxent模型的丹霞山国家级自然保护区极小种群植物丹霞梧桐的潜在生境评价[J]. 林业科学, 2019, 55(8): 19-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||