欢迎访问林业科学,今天是

林业科学 ›› 2020, Vol. 56 ›› Issue (6): 113-126.doi: 10.11707/j.1001-7488.20200612

• 综合评述 • 上一篇    下一篇

表型技术在林木育种和精确林业上的应用

边黎明1,张慧春2,*   

  1. 1. 南京林业大学林学院 南方现代林业协同创新中心 林木遗传与生物技术教育部重点实验室 南京 210037
    2. 南京林业大学机械电子工程学院 南京 210037
  • 收稿日期:2019-05-15 出版日期:2020-06-25 发布日期:2020-07-17
  • 通讯作者: 张慧春
  • 基金资助:
    国家自然科学基金项目(31371963);福建省林木种苗科技攻关六期项目(20192021);江苏省六大人才高峰(NY-058);江苏省青蓝工程项目(苏教201842);江苏省333工程项目(苏人20186);福建省种业创新与产业化工程林业项目(ZYCX-LY-2017004)

Application of Phenotyping Techniques in Forest Tree Breeding and Precision Forestry

Liming Bian1,Huichun Zhang2,*   

  1. 1. Co-Innovation Center for Sustainable Forestry in Southern China Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education College of Forestry, Nanjing Forestry University Nanjing 210037
    2. College of Mechanical and Electronic Engineering, Nanjing Forestry University Nanjing 210037
  • Received:2019-05-15 Online:2020-06-25 Published:2020-07-17
  • Contact: Huichun Zhang

摘要:

缺乏有效的表型采集与分析能力已成为林木育种研究领域的瓶颈,其关键难点是生成准确的表型数据,以便正确解释获得的结果。在精确林业中面临的核心挑战是实现自动化、大范围、快速实时的表型性状分析。长久以来,林木遗传育种和精确林业监测要花费大量的人力收集常规表型数据,传统的表型研究方法具有效率低、维度低、通量低、精度低、劳动量大、主观性强等缺点,无法满足挖掘"基因型-表型-环境型"内在关联、揭示特定生物性状形成机制的科研需求。因此,亟需在林业上发展并应用非破坏式、自动化、高通量、高精度的表型监测技术。现代表型技术使用搭载多种类型成像传感器的系统,自动收集林木形态结构和生理生化等大量表型数据,实现对大批量林木个体的生长监测。另外,无损测量的特点使对同一林木个体进行连续监测得以实现,从而获取林木生长相关的表型性状,如在胁迫研究中,表型技术能明晰林木对胁迫的响应模式及其对胁迫的抗性。利用新型传感器技术对遗传测定群体进行准确、高通量、无损式、快速高效的表型信息采集,对于加快林木遗传改良进程、实施精确林业战略、挖掘优良种质、提高森林质量和抗逆能力至关重要。本文回顾林木表型技术的发展,介绍了基于个体和基于林分(群体)的林木表型技术的应用领域和研究内容。详细分析可见光相机、荧光成像仪、近红外成像仪、高光谱成像仪、热红外成像仪和激光雷达扫描仪等各成像传感器的测量参数、频谱范围、成像原理、优缺点,以及在林木表型信息采集上的应用现状等。林木表型技术的研究趋势为:1)构建新型采集平台获取林分和个体的关键表型性状以提高精度及通量;2)利用环境监测技术,分析林木在温度、湿度、水分、光照等非生物胁迫下的表型反应,以进行抗逆良种选育;3)利用生物胁迫下的表型变化分析推动精确林业中的病虫害监测、分类、识别和防治等;4)利用高通量表型技术与全基因组选择、数量性状位点和全基因组关联分析相结合以鉴定基因的功能,提高选择的准确性。表型技术的应用将实现快速实时、高质量、高精度、高通量的采集林木数据,从而提高育种效率,优化精确林业实践,加速林业信息化的发展进程。

关键词: 表型, 成像传感器, 精确林业, 林木遗传育种, 生物胁迫

Abstract:

The lack of efficient phenotyping capability has become a bottleneck to the studies of forest tree breeding, and the key difficulty of phenotyping is to capture accurate phenotypic data so that the results acquired can be correctly explained. The central challenge of precision forestry is automatic, large-scale and real-time analysis of phenotypic traits. Conventionally, evaluation of tree phenotypic traits is manually-performed, subjective, inefficient, destructive and error-prone. The manual analysis is unable to meet the needs of exploring the internal relationships among "genotype-phenotype-environment" and unraveling the formation mechanism of specific biological traits in a comprehensive manner. Modern phenotyping technology uses a system equipped with various types of imaging sensors to automatically collect a large number of phenotypic data, such as forest morphology, structure, physiology and biochemistry, so as to monitor the growth of individual trees. In addition, the nondestructive measurements enable continuous monitoring of the same individual trees to obtain the phenotypic traits related to growth and development. For example, in stress studies, phenotyping technology can clarify the model of response and resistance of the trees to the stress. Effective implementation of remote sensing to phenotype trees that facilitates accurate, high-throughput, automatic and non-destructive screening of trees in genetic tests is critical for accelerating tree improvement and breeding strategies for higher yield and stress-resistance in precision forestry. We present a review of recent advances in forestry phenotyping and an introduction of individual-based and stand-based forestry phenotyping. Thus, various techniques for tree phenotyping were presented together with applications of these techniques. The measured parameters, spectral range, imaging principle, advantages and disadvantages of visible camera, fluorescence imaging sensor, near-infrared camera, hyperspectral imaging sensor, thermal infrared imaging sensor, and LiDAR scanner, as well as the development of tree phenotype information collection were analyzed. Furthermore, faster and higher-resolution tree data collection would lead to the improvement of precision-forestry practices. Future application of phenotyping platforms requires:1) establishing new platforms to obtain the key phenotypic traits of stands and individuals so as to improve the accuracy and throughput; 2) using environmental monitoring techniques to analyze the phenotypic responses of trees under abiotic stress so as to carry out breeding for high resistance varieties; 3) using the phenotypic changes under biological stress to promote the accurate monitoring, classification, identification and control of pests and diseases; 4) using high throughput phenotyping technology to combine with genome wide selection, quantitative trait loci and genome wide association study to identify the function of genes. In this paper, it was described that advances in phenotyping technologies lead to real-time, high-quality and high-throughput data on trees to accelerate tree improvement through breeding and to optimize precision forestry practices.

Key words: phenotype, imaging sensor, precision forestry, forest tree genetics and breeding, biotic stress

中图分类号: