林业科学 ›› 2019, Vol. 55 ›› Issue (12): 151-161.doi: 10.11707/j.1001-7488.20191216
李伟,其其格,黄旭,岳阳,尹靖琨,王瑞俭*
收稿日期:2018-12-29
									
				
									
				
									
				
											出版日期:2019-12-25
									
				
											发布日期:2020-01-02
									
			通讯作者:
					王瑞俭
												基金资助:Wei Li,Qige Qi,Xu Huang,Yang Yue,Jingkun Yin,Ruijian Wang*
Received:2018-12-29
									
				
									
				
									
				
											Online:2019-12-25
									
				
											Published:2020-01-02
									
			Contact:
					Ruijian Wang   
												Supported by:摘要:
目的: 筛选出适合鉴别蓝莓品种的DNA条形码,用于蓝莓不同品种的区分及遗传分化研究。方法: 以40个蓝莓品种108份样品总DNA为模板,对8个条形码片段(rpoB、psbA-trnH、ycf5、rbcL、rpoC、matK、ITS、ITS2)进行扩增与测序,分析扩增效率及测序成功率、遗传距离、barcoding gap,并对遗传距离计算结果进行Wilcoxon检验,利用NJ树法对各蓝莓品种进行聚类分析。结果: 在8个DNA条形码中,ITS与ycf5在所有蓝莓样本中均无扩增产物。除matK序列扩增成功率(96.30%)、测序成功率(99.04%)相对较低外,其他5个条形码扩增与测序成功率均为100%。蓝莓的rpoB序列完全一致,为高度保守序列。各条形码的变异位点数依次为:ITS2(11个)> matK(4个)> rbcL(3个)> psbA-trnH(2个)> rpoC(1个)> rpoB(0个)。各蓝莓品种的品种内、品种间遗传距离较小,介于0.000 16~0.002 58之间,且品种间遗传距离大于品种内。Barcoding gap分析结果显示,各条形码均未形成明显的间隔区,但从分布情况看,ITS2、psbA-trnH、matK 3个条形码有偏向两端分布的趋势,尤其是ITS2。Wilcoxon检验显示,ITS2、psbA-trnH品种间变异较大,psbA-trnH品种内的变异较大。聚类分析结果表明,psbA-trnH和rpoC可将蓝莓品种分为2个类群,rbcL和matK将蓝莓划分为3个类群,ITS2将蓝莓分为4个类群。利用条形码组合可提高蓝莓品种鉴定率,其中ITS2+matK+rpoC+rbcL鉴定成功率最高,为20%。结论: ITS2对蓝莓品种的鉴定结果优于其他条形码,条形码组合ITS2+matK+rpoC+rbcL将40个蓝莓品种分为14组,能够将山东省主要的蓝莓栽培品种如伯克利、阳光蓝、北陆等品种区分开来,较适于蓝莓的品种鉴定。
中图分类号:
李伟,其其格,黄旭,岳阳,尹靖琨,王瑞俭. 蓝莓栽培品种的DNA条形码[J]. 林业科学, 2019, 55(12): 151-161.
Wei Li,Qige Qi,Xu Huang,Yang Yue,Jingkun Yin,Ruijian Wang. DNA Barcodes of Blueberry Cultivars[J]. Scientia Silvae Sinicae, 2019, 55(12): 151-161.
表1
蓝莓(Vaccinium)品种信息①"
| 序号 No.  | 品种 Cultivar  | 栽培类群 Cultural groups  | 来源地 Locality of origin  | 
| 1 | ‘大粒星’ V. corymbosum ‘Otsububoshi’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 2 | ‘普露’ V. corymbosum ‘Puru’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 3 | ‘哈里森’ V. corymbosum ‘Harison’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 4 | ‘彭德尔’ V. corymbosum ‘Pender’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 5 | ‘考林’ V. corymbosum ‘Collins’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 6 | ‘莱格西’ V. corymbosum ‘Legacy’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 7 | ‘尼尔森’ V. corymbosum ‘Nelson’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 8 | ‘蓝天’V. corymbosum ‘Bluehaven’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 9 | ‘努努益’ V. corymbosum ‘Nui’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 10 | ‘早蓝’ V. corymbosum ‘Earliblue’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 11 | ‘卡德’ V. corymbosum ‘Meader’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 12 | ‘泽西’ V. corymbosum ‘Jersey’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 13 | ‘瑞卡’ V. corymbosum ‘Reka’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 14 | ‘艾克塔’ V. corymbosum ‘Echota’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 15 | ‘蓝丰’ V. corymbosum ‘Bluecrop’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 16 | ‘蓝线’ V. corymbosum ‘Blueray’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 17 | ‘公爵’ V. corymbosum ‘Duke’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 18 | ‘蓝鸟’ V. corymbosum ‘Bluejay’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 19 | ‘布里吉塔’ V. corymbosum ‘Brigitta’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 澳大利亚Australia | 
| 20 | ‘蓝金’ V. corymbosum‘Bluegold’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 21 | ‘康维尔’ V. corymbosum ‘Coville’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 22 | ‘晚蓝’ V. corymbosum ‘Lateblue’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 23 | ‘红利’ V. corymbosum ‘Bonus’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 24 | ‘伯克利’ V. corymbosum ‘Berkeley’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 25 | ‘埃利奥特’ V. corymbosum ‘Elliot’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 26 | ‘钱德勒’ V. corymbosum ‘Chandler’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 27 | ‘鲁贝尔’ V. corymbosum ‘Rubel’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 28 | ‘塞拉’ V. corymbosum ‘Sierra’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 29 | ‘达柔’ V. corymbosum ‘Darrow’ | 北高丛蓝莓North highbush blueberry(V. corymbosum) | 美国America | 
| 30 | ‘阳光蓝’ Vaccinium ‘Sunshineblue’ | 南高丛蓝莓Southern highbush blueberry* | 美国America | 
| 31 | ‘萨米特’ Vaccinium ‘Summit’ | 南高丛蓝莓Southern highbush blueberry* | 美国America | 
| 32 | ‘奥尼尔’ Vaccinium ‘O’neal’ | 南高丛蓝莓Southern highbush blueberry* | 美国America | 
| 33 | ‘顶峰’ V. ashei ‘Climax’ | 兔眼蓝莓Rabbiteye blueberry (V. ashei) | 美国America | 
| 34 | ‘奥斯汀’ V. ashei ‘Austin’ | 兔眼蓝莓Rabbiteye blueberry (V. ashei) | 美国America | 
| 35 | ‘蓝美人’V. ashei ‘Bluebell’ | 兔眼蓝莓Rabbiteye blueberry (V. ashei) | 美国America | 
| 36 | ‘芭尔德温’ V. ashei ‘Baldwin’ | 兔眼蓝莓Rabbiteye blueberry (V. ashei) | 美国America | 
| 37 | ‘奇伯瓦’ Vaccinium ‘Chippwa’ | 半高丛蓝莓Half-highbush blueberry* | 美国America | 
| 38 | ‘北陆’ Vaccinium ‘Northland’ | 半高丛蓝莓Half-highbush blueberry* | 美国America | 
| 39 | ‘帽盖’ Vaccinium ‘Tophat’ | 半高丛蓝莓Half-highbush blueberry* | 美国America | 
| 40 | ‘斯卫克’ V. myrtilloides ‘Brunswick’ | 矮丛蓝莓Lowbush blueberry* | 加拿大Canada | 
表2
DNA条形码引物信息"
| 条形码 DNA barcode  | 引物名称 Primers  | 引物序列 Primer sequence(5′—3′)  | 片段来源 Source  | 产物长度 Sequence length/bp  | 
| ITS2 | S2 F  S3 R  | ATGCGATACTTGGTGTGAATGA  CGCTTCTCCAGACTACAAT  | 核基因 Genome  | ≈500 | 
| rbcL | 1 F  724 R  | ATGTCACCACAAACAGAAC  TCGCATGTACCTGCAGTAGC  | 叶绿体基因 Chloroplast  | ≈800 | 
| psbA-trnH | PA F  TH R  | GTTATGCATGAACGTAATGCTC CGCGCATGGTGGATTCACAATCC  | 叶绿体基因 Chloroplast  | ≈700 | 
| rpoC | 2 F  4 R  | GGCAAAGAGGGAAGATTCG CCATAAGCATATCTTGAGTTGG  | 叶绿体基因 Chloroplast  | ≈1 000 | 
| rpoB | 1 F  4 R  | AAGTGCATTGTTGGAACTGG  GATCCCAGCATCACAATTCC  | 叶绿体基因 Chloroplast  | ≈500 | 
| matK | 390 F  1326 R  | CGATCTATTCATTCAATATTTC TCTAGCACACGAAAGTCGAAGT  | 叶绿体基因 Chloroplast  | ≈1 000 | 
| Ycf5 | 2 F  3 R  | ACTTTAGAGCATATATTAACTC  ACTTACGTGCATCATTAACCA  | 叶绿体基因 Chloroplast  | ≈500 | 
| ITS | 5a F  4 R  | CCTTATCATTTAGAGGAAGGAG  TCCTCCGCTTATTGATATGC  | 核基因 Genome  | ≈800 | 
表3
DNA条形码扩增及测序成功率"
| 来源 Source  | 条形码 Barcode  | 样品总数 Number of samples  | 片段扩增数 Number of fragments  | 扩增率 Amplification efficiency(%)  | 测序成功率 Sequencing success rate (%)  | 
| 叶绿体来源条形码 Chloroplast  | rpoB | 108 | 108 | 100 | 100 | 
| psbA-trnH | 108 | 108 | 100 | 100 | |
| rbcL | 108 | 108 | 100 | 100 | |
| rpoC | 108 | 108 | 100 | 100 | |
| matK | 108 | 104 | 96.30 | 99.04 | |
| ycf5 | 108 | 0 | 0 | 0 | |
| 核基因来源条形码 Genome  | ITS2 | 108 | 108 | 100 | 100 | 
| ITS | 108 | 0 | 0 | 0 | 
表4
DNA条形码的序列信息及遗传距离分析"
| 条形码 Barcode  | 序列长度 Sequence length/bp  | GC百分比 Average of GC content(%)  | 变异位点 Number of variable sites  | 品种间遗传距离均值 Mean genetic distance among cultivars  | 品种内遗传距离均值 Mean genetic distance within cultivars  | 
| ITS2 | 419 | 56.4 | 11 | 0.002 588±0.001 606 | 0.000 359±0.000 333 | 
| psbA-trnH | 380 | 32.2 | 2 | 0.001 699±0.001 173 | 0.000 572±0.000 405 | 
| rbcL | 649 | 42.7 | 3 | 0.000 549±0.000 507 | 0.000 167±0.000 161 | 
| rpoC | 426 | 43.6 | 1 | 0.000 525±0.000 503 | 0.000 196±0.000 186 | 
| matK | 829 | 33.8 | 4 | 0.000 772±0.000 668 | 0.000 282±0.000 277 | 
| rpoB | 446 | 37.0 | 0 | 0 | 0 | 
表5
不同DNA条形码品种间差异的Wilcoxon检验①"
| 正秩 Positive rank  | 负秩 Negative rank  | 相对秩 Relative ranks  | n | P | 结果 Result  | 
| ITS2 | psbA-trnH | W+=100 645; W-=93 731 | 780 | 0.440 | P>0.05; ITS2=psbA-trnH | 
| ITS2 | rbcL | W+=28 199; W-=173 731 | 780 | 0.000 | P < 0.01; ITS2>rbcL | 
| ITS2 | rpoC | W+=20 411; W-=165 944 | 780 | 0.000 | P < 0.01; ITS2>rpoC | 
| ITS2 | matK | W+=61 356; W-=201 094 | 780 | 0.000 | P < 0.01; ITS2>matK | 
| psbA-trnH | rbcL | W+=1 457; W-=66 439 | 780 | 0.000 | P < 0.01; psbA-trnH>rbcL | 
| psbA-trnH | rpoC | W+=1 833; W-=66 802 | 780 | 0.000 | P < 0.01; psbA-trnH>rpoC | 
| psbA-trnH | matK | W+=61 042; W-=161 069 | 780 | 0.000 | P < 0.01; psbA-trnH>matK | 
| rbcL | rpoC | W+=33 709; W-=34 926 | 780 | 0.767 | P>0.05; rbcL=rpoC | 
| rbcL | matK | W+=143 762; W-=76 354 | 780 | 0.000 | P < 0.01; rbcL < matK | 
| rpoC | matK | W+=133 152; W-=72 609 | 780 | 0.000 | P < 0.01; rpoC < matK | 
表6
不同DNA条形码品种内差异的Wilcoxon检验"
| 正秩 Positive rank  | 负秩 Negative rank  | 相对秩 Relative ranks  | n | P | 结果 Result  | 
| ITS2 | psbA-trnH | W+=32; W-=13 | 40 | 0.258 | P>0.05; ITS2=psbA-trnH | 
| ITS2 | rbcL | W+=12; W-=43 | 40 | 0.112 | P>0.05; ITS2=rbcL | 
| ITS2 | rpoC | W+=7; W-=38 | 40 | 0.063 | P>0.05; ITS2=rpoC | 
| ITS2 | matK | W+=48; W-=72 | 40 | 0.492 | P>0.05; ITS2=matK | 
| psbA-trnH | rbcL | W+=1; W-=20 | 40 | 0.044 | 0.01 < P < 0.05; psbA-trnH>rbcL | 
| psbA-trnH | rpoC | W+=1; W-=20 | 40 | 0.046 | 0.01 < P < 0.05; psbA-trnH>rpoC | 
| psbA-trnH | matK | W+=45; W-=60 | 40 | 0.633 | P>0.05; psbA-trnH=matK | 
| rbcL | rpoC | W+=10; W-=5 | 40 | 0.498 | P>0.05; rbcL=rpoC | 
| rbcL | matK | W+=68; W-=23 | 40 | 0.112 | P>0.05; rbcL=matK | 
| rpoC | matK | W+=56; W-=22 | 40 | 0.176 | P>0.05; rpoC=matK | 
| 付涛, 胡仲义, 何月秋, 等. 基于cpDNA条形码鉴定铁皮石斛种质资源. 核农学报, 2017. 31 (2): 255- 262. | |
| Fu T , Hu Z Y , He Y Q , et al. Identification of germplasm resources in Dendrobium officinale based on cpDNA barcoding. Journal of Nuclear Agricultural Sciences, 2017. 31 (2): 255- 262. | |
|  
											  高婷, 姚辉, 马新业, 等.  中国黄芪属药用植物DNA条形码(ITS2)鉴定. 世界科学技术-中医药现代化, 2010. 12 (2): 222- 227. 
											 												 doi: 10.3969/j.issn.1674-3849.2010.02.016  | 
										|
|  
											   Gao T ,  Yao H ,  Ma X Y , et al.  Identification of Astragalus plants in China using the region ITS2. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2010. 12 (2): 222- 227. 
											 												 doi: 10.3969/j.issn.1674-3849.2010.02.016  | 
										|
| 高健, 孟婉姮, 杜芳, 等. 鸡爪槭种下分类群的DNA条形码筛选. 植物科学学报, 2015. 33 (6): 734- 743. | |
| Gao J , Meng W H , Du F , et al. DNA Barcoding of Acer palmatum(Aceraceae). Plant Science Journal, 2015. 33 (6): 734- 743. | |
| 顾姻, 贺善安. 蓝浆果与蔓越莓. 北京: 中国农业出版社. 2001. | |
| Gu Y , He S A . Blueberry and Cranberry. Beijing: China Agriculture Press. 2001. | |
| 韩斯, 孟宪军, 汪艳群, 等. 不同品种蓝莓品质特性及聚类分析. 食品科学, 2015. 36 (6): 140- 144. | |
| Han S , Meng X J , Wang Y Q , et al. Quality properties and cluster analysis of different blueberry cultivars. Food Science, 2015. 36 (6): 140- 144. | |
| 韩晓伟, 严玉平, 吴兰芳, 等. 柴胡及其伪品的DNA条形码鉴定研究. 中草药, 2016. 47 (9): 1583- 1588. | |
| Han X W , Yan Y P , Wu L F , et al. Identification of Bupleuri Radix and its adulterants by DNA barcoding. Chinese Traditional and Herbal Drugs, 2016. 47 (9): 1583- 1588. | |
|  
											  黄海, 李劲松, 符岸军, 等.  石斛属植物DNA条形码序列的筛选. 热带作物学报, 2010. 31 (10): 1769- 1777. 
											 												 doi: 10.3969/j.issn.1000-2561.2010.10.022  | 
										|
|  
											   Huang H ,  Li J S ,  Fu A J , et al.  Screening of potential DNA barcoding markers in Dendrobium. Chinese Journal of Tropical Crops, 2010. 31 (10): 1769- 1777. 
											 												 doi: 10.3969/j.issn.1000-2561.2010.10.022  | 
										|
| 李亚东, 裴嘉博, 孙海悦. 全球蓝莓产业发展现状及展望. 吉林农业大学学报, 2018. 40 (4): 421- 432. | |
| Li Y D , Pei J B , Sun H Y . Status and prospect of global blueberry industry. Journal of Jilin Agricultural University, 2018. 40 (4): 421- 432. | |
| 李建芳, 黄静, 程芳婷, 等. 地黄属核基因与叶绿体基因DNA条形码比较研究. 中草药, 2017. 48 (1): 165- 171. | |
| Li J F , Huang J , Cheng F T , et al. Comparison on DNA barcodes of nuclear and chloroplast gene fragments in Rehmannia Libosch. ex Fisch. et Mey. (Rehmanniaceae).. Chinese Traditional and Herbal Drugs, 2017. 48 (1): 165- 171. | |
|  
											  任阳阳, 张梦婷, 张嘉丽, 等.  虾脊兰属植物DNA条形码的确立. 世界中医药, 2016. 11 (11): 2425- 2429. 
											 												 doi: 10.3969/j.issn.1673-7202.2016.11.058  | 
										|
|  
											   Ren Y Y ,  Zhang M T ,  Zhang J L , et al.  Establishment of DNA barcode for the Calanthe. World Chinese Medicine, 2016. 11 (11): 2425- 2429. 
											 												 doi: 10.3969/j.issn.1673-7202.2016.11.058  | 
										|
| 宋慧芳, 刘海双, 杨义明, 等. 山葡萄种质资源DNA条形码通用序列的筛选. 植物学报, 2017. 52 (6): 723- 732. | |
| Song H F , Liu H S , Yang Y M , et al. Screening of universal DNA barcodes for Vitis amurensis. Chinese Bulletin of Botany, 2017. 52 (6): 723- 732. | |
|  
											  孙海悦, 李亚东.  世界蓝莓育种概述. 东北农业大学学报, 2014. 45 (9): 116- 122. 
											 												 doi: 10.3969/j.issn.1005-9369.2014.09.019  | 
										|
|  
											   Sun H Y ,  Li Y D .  Overview of blueberry breeding in the world. Journal of Northeast Agricultural University, 2014. 45 (9): 116- 122. 
											 												 doi: 10.3969/j.issn.1005-9369.2014.09.019  | 
										|
| 王柯, 陈科力, 刘震, 等. 锦葵科植物DNA条形码通用序列的筛选. 植物学报, 2011. 46 (3): 276- 284. | |
| Wang K , Chen K L , Liu Z , et al. Screening of universal DNA barcodes for Malvaceae plants. Chinese Bulletin of Botany, 2011. 46 (3): 276- 284. | |
|  
											  王琼, 郑勇奇, 周建仁.  分子标记在林业植物新品种鉴别中的应用及前景. 林业科学, 2008. 44 (6): 180- 182. 
											 												 doi: 10.3321/j.issn:1001-7488.2008.06.032  | 
										|
|  
											   Wang Q ,  Zheng Y Q ,  Zhou J R .  Application of molecular markers in identification of new varieties in forest plants. Scientia Silvae Sinicae, 2008. 44 (6): 180- 182. 
											 												 doi: 10.3321/j.issn:1001-7488.2008.06.032  | 
										|
| 吴亚男, 许亮, 陈靓, 等. 基于ITS2序列的茄科酸浆属植物的DNA分子鉴定. 中国实验方剂学杂志, 2016. 22 (8): 22- 27. | |
| Wu Y N , Xu L , Chen L , et al. DNA molecular identification of Physalis medicinal plants in Solanaceae by ITS2 barcode sequence. Chinese Journal of Experimental Traditional Medical Formulae, 2016. 22 (8): 22- 27. | |
|  
											  谢跃杰, 王仲明, 王强, 等.  不同品种和成熟度蓝莓理化特性的主成分分析评价. 食品科学, 2017. 38 (23): 94- 99. 
											 												 doi: 10.7506/spkx1002-6630-201723016  | 
										|
|  
											   Xie Y J ,  Wang Z M ,  Wang Q , et al.  Assessment of the differences in physical, chemical and phytochemical properties of different blueberry cultivars harvested at different dates using principal component analysis. Food Science, 2017. 38 (23): 94- 99. 
											 												 doi: 10.7506/spkx1002-6630-201723016  | 
										|
| 谢国芳, 谭彦, 王瑞, 等. 贵州主栽蓝莓晚熟品种及产地加工特性评价. 食品与发酵工业, 2016. 42 (1): 128- 133. | |
| Xie G F , Tan Y , Wang R , et al. Evaluation of main cultivars and planting areas on the effect of processing characteristics of late-maturing blueberry in Guizhou province. Food & Fermentation Industries, 2016. 42 (1): 128- 133. | |
|  
											  尹德洁, 苏淑钗, 刘肖, 等.  蓝莓SRAP-PCR反应体系的建立优化及引物筛选. 东北林业大学学报, 2013. 41 (2): 35- 39, 64. 
											 												 doi: 10.3969/j.issn.1000-5382.2013.02.009  | 
										|
|  
											   Yin D J ,  Su S C ,  Liu X , et al.  Establishment and optimization of SRAP-PCR system and primer screening for Vaccinium spp. Journal of Northeast Forestry University, 2013. 41 (2): 35- 39, 64. 
											 												 doi: 10.3969/j.issn.1000-5382.2013.02.009  | 
										|
| 张琴, 莫有迪, 张亚波, 等. 基于线粒体COI基因的竹笋夜蛾亲缘关系. 林业科学, 2017. 53 (4): 96- 104. | |
| Zhang Q , Mo Y D , Zhang Y B , et al. Genetic relationship of shoot-boring noctuids based on mitochondrial Cytochrome Oxidase I gene. Scientia Silvae Sinicae, 2017. 53 (4): 96- 104. | |
| 张振, 张含国, 莫迟, 等. 红松转录组SSR分析及EST-SSR标记开发. 林业科学, 2015. 51 (8): 114- 120. | |
| Zhang Z , Zhang H G , Mo C , et al. Transcriptome sequencing analysis and development of EST-SSR markers for Pinus koraiensis. Scientia Silvae Sinicae, 2015. 51 (8): 114- 120. | |
|  
											   CBOL Plant Working Group .  A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106 (31): 12794- 12797. 
											 												 doi: 10.1073/pnas.0905845106  | 
										|
|  
											   Chase M W ,  Cowan R S ,  Hollingsworth P M , et al.  A proposal for a standardised protocol to barcode all land plants. Taxon, 2007. 56 (2): 295- 299. 
											 												 doi: 10.1002/tax.562004  | 
										|
|  
											   Chen S ,  Yao H ,  Han J , et al.  Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One, 2010. 5 (1): e8613. 
											 												 doi: 10.1371/journal.pone.0008613  | 
										|
|  
											   Hebert P D N ,  Penton E H ,  Burns J M , et al.  Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101 (41): 14812- 14817. 
											 												 doi: 10.1073/pnas.0406166101  | 
										|
|  
											   Hebert P D N ,  Cywinska A ,  Ball S L , et al.  Biological identifications through DNA barcodes. Proceedings of the Royal Society B:Biological Sciences, 2003. 270 (1512): 313- 321. 
											 												 doi: 10.1098/rspb.2002.2218  | 
										|
| Holá E , Kocková J , Těšitel J , et al. DNA barcoding as a tool for identification of host association of root-hemiparasitic plants. Folia Geobotanica, 2017. 52 (2): 1- 12. | |
|  
											   Hollingsworth P M ,  Graham S W ,  Little D P .  Choosing and using a plant DNA barcode. PLoS One, 2011. 6 (5): e19254. 
											 												 doi: 10.1371/journal.pone.0019254  | 
										|
| Hu W , Bastin T W S . Consumer acceptance and willingness to pay for blueberry products with nonconventional attributes. Journal of Agricultural & Applied Economics, 2009. 41 (1): 47- 60. | |
| Keller A , Schleicher T , Schultz J , et al. 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene, 2009. 430 (1): 50- 57. | |
|  
											   Kim H M ,  Oh S H ,  Bhandari G S , et al.  DNA barcoding of Orchidaceae in Korea. Molecular Ecology Resources, 2014. 14 (3): 499- 507. 
											 												 doi: 10.1111/1755-0998.12207  | 
										|
|  
											   Liu C ,  Shi L C ,  Xu X L , et al.  DNA barcode goes two-dimensions:DNA QR code web server. PLoS One, 2012. 7 (5): e35416. 
											 												 doi: 10.1371/journal.pone.0035416  | 
										|
| Lyrene P M . Low-chill highbush blueberries. Fruit Varieties Journal, 1990. 44 (2): 82- 86. | |
|  
											   Meyer P ,  Paulay G .  DNA barcoding:error rates based on comprehensive sampling. PLoS Biology, 2005. 3 (12): e422. 
											 												 doi: 10.1371/journal.pbio.0030422  | 
										|
|  
											   Siddiq M ,  Dolan K D .  Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L). Food Chemistry, 2017. 218, 216- 220. 
											 												 doi: 10.1016/j.foodchem.2016.09.061  | 
										|
|  
											   Song J Y ,  Hui Y ,  Ying L , et al.  Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique. Journal of Ethnopharmacol, 2009. 124 (3): 434- 439. 
											 												 doi: 10.1016/j.jep.2009.05.042  | 
										|
| Vijayan K , Tsou C H . DNA barcoding in plants:taxonomy in a new perspective. Current Science, 2010. 99 (11): 1530- 1541. | 
| [1] | 马松梅, 王春成, 孙芳芳, 魏博, 聂迎彬. 濒危植物新疆野扁桃的遗传多样性[J]. 林业科学, 2019, 55(9): 71-80. | 
| [2] | 张守科, 方林鑫, 刘亚宁, 王毅, 张威, 舒金平, 张亚波, 汪阳东, 王浩杰. 茶籽象ATP合成酶基因在不同海拔选择压力下的遗传分化及结构变异[J]. 林业科学, 2019, 55(6): 65-73. | 
| [3] | 徐晓丹, 邵维助, 郑伟. 滇山茶多倍体栽培品种的细胞倍性[J]. 林业科学, 2018, 54(9): 44-48. | 
| [4] | 孙莎, 郜海燕, 熊涛, 陈杭君, 刘瑞玲, 吴伟杰. 五倍子提取液对蓝莓采后病害和品质的影响[J]. 林业科学, 2018, 54(6): 53-62. | 
| [5] | 陈文荣, 潘霞, 邵俊怡, 廖芳蕾, 杨莉, 胡盈盈, 余颖, 郭卫东. 蓝莓VcLon1基因的克隆、表达及抗旱性分析[J]. 林业科学, 2018, 54(6): 73-84. | 
| [6] | 许时星, 郜海燕, 陈杭君, 韩强. 振动胁迫对蓝莓果实品质和抗氧化酶活性的影响[J]. 林业科学, 2017, 53(9): 26-34. | 
| [7] | 张鹤华, 李艳芳, 聂佩显, 王红阳, 张凌云. 蓝莓果实同化物韧皮部卸载路径与糖代谢酶活性[J]. 林业科学, 2017, 53(3): 40-48. | 
| [8] | 乌凤章, 朱心慰, 胡锐锋, 王贺新, 陈英敏. NaCl胁迫对2个蓝莓品种幼苗生长及离子吸收、运输和分配的影响[J]. 林业科学, 2017, 53(10): 40-49. | 
| [9] | 叶振风, 樊基胜, 贾兵, 樊胜华, 朱立武. 蓝莓耐寒良种‘徽王1号’[J]. 林业科学, 2016, 52(7): 172-172. | 
| [10] | 王雁红, 俞琦, 杨佳, 赵鹏, 李忠虎, 赵桂仿. 基于核微卫星的短柄枹栎居群遗传多样性和遗传结构[J]. 林业科学, 2015, 51(12): 121-131. | 
| [11] | 杨钤, 谢映平, 樊金华, 邵生富, 吴俊, 王彦士, 赵常胜, 张英伟. 日本松干蚧3个地理种群的遗传分化[J]. 林业科学, 2013, 49(12): 88-96. | 
| [12] | 夏明瑞;周国娜;高宝嘉;. 不同林分类型油松毛虫CO Ⅰ 基因变异分析[J]. 林业科学, 2012, 48(9): 171-175. | 
| [13] | 李楠;柳新红;李因刚;李海波;盛炜彤;惠刚盈;郑勇奇. 白花树天然群体的遗传多样性[J]. 林业科学, 2012, 48(11): 49-56. | 
| [14] | 唐琴;曾秀丽;廖明安;潘光堂;扎西;龚君华;次仁卓嘎. 大花黄牡丹遗传多样性的SRAP分析[J]. 林业科学, 2012, 48(1): 70-76. | 
| [15] | 高宝嘉;杜娟;高素红;刘军侠. 美国白蛾种群的遗传多样性与遗传分化[J]. 林业科学, 2010, 46(8): 120-124. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||