冯慧芳, 薛 立, 任向荣,等. 2011.4种阔叶幼苗对PEG模拟干旱的生理响应. 生态学报, 31(2):371-382. (Feng H F, Xue L, Ren X R, et al. 2011. Physiological responses of four broadleaved seedlings to drought stress simulated by PEG. Acta Ecologica Sinica, 31(2):371-382.[in Chinese]) 刘 晓, 金 洋, 冯 霞,等. 2017. 转hpa1Xm基因烟草后代的分子检测及苗期生理生化指标测定. 分子植物育种, (5):1732-1737. (Liu X, Jin Y, Feng X, et al. 2017. Detection and determination of physiological and biochemical indexes at seedling stage in hpa1Xm-transgenic tobacco plants. Molecular Plant Breeding, (5):1732-1737.[in Chinese]) 石慧勤, 张罗沙, 邸 葆, 等. 2015. 盐碱胁迫下金叶接骨木根系K含量模型构建. 林业科学, 51(9):18-23. (Shi H Q, Zhang L S, Di B, et al. 2015. Establishment of the estimation model of K content of Sambucus canadensis root under saline-alkali stress. Scientia Silvae Sinicae, 51(9):18-23.[in Chinese]) 吴 凯, 周晓阳. 2007. 环境胁迫对植物超微结构的影响. 山东林业科技, (3):80-83. (Wu K, Zhou X Y. 2007. Effects of environmental stresses on plant ultrastructure. Journal of Shandong Forestry Science and Technology, (3):80-83.[in Chinese]) 汪志威, 刘仁祥, 石妙妙, 等. 2016. 基于称重法的烟草伸根期抗旱性鉴定. 西南农业学报, 29(4):959-965. (Wang Z W, Liu R X, Shi M M, et al. 2016. Drought resistance of tobacco seedlings identified by weighting method at root extending stage. Southwest China Journal of Agricultural Sciences, 29(4):959-965.[in Chinese]) 杨颖丽, 杨 宁, 王 莱,等. 2007. 盐胁迫对小麦幼苗生理指标的影响. 兰州大学学报:自然科学版, 43(2):29-34. (Yang Y L, Yang N, Wang L, et al. 2007. Effect of salinity on the physiological characteristic in two wheat cultivars. Journal of Lanzhou University:Natural Sciences, 43(2):29-34.[in Chinese]) 郁 慧, 刘中亮, 胡宏亮,等. 2011. 干旱胁迫对5种植物叶绿体和线粒体超微结构的影响. 植物研究, 31(2):152-158. (Yu H, Liu Z L, Hu H L, et al. 2011. Effect of drought stress on the ultramicrostructure of chloroplasts and mitochondria of five plants. Bulletin of Botanical Research, 31(2):152-158.[in Chinese]) 余柯达. 2016. 蓝莓VcLON2蛋白酶对植物抗逆的影响. 金华:浙江师范大学硕士学位论文. (Yu K D. 2016. VcLoN2 is involved in abiotic stress tolerance in blueberry. Jinhua:MS thesis of Zhejiang Normal University.[in Chinese]) Adam C, Picard M, Déquardchablat M, et al. 2012. Biological roles of the Podospora anserina mitochondrial Lon protease and the importance of its N-domain. PLoS One, 7(5):e38138. Bates L S, Waldren R P, Teare I D. 1973. Rapid determination of free proline for water-stress studies. Plant & Soil, 39(1):205-207. Bolwell G P, Davies D R, Gerrish C, et al. 1998. Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms. Plant Physiology, 116(4):1379-1385. Bota D A, van Remmen H, Davies K J A. 2002. Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Letters, 532(1/2):103-106. Davey M W, Stals E, Panis B, et al. 2005. High-throughput determination of malondialdehyde in plant tissues. Analytical Biochemistry, 347(2):201-207. Fryer M J, Oxborough K, Mullineaux P M, et al. 2002. Imaging of photo-oxidative stress responses in leaves. Journal of Experimental Botany, 53(372):13943-13946. Fukuda R, Zhang H, Kim J W, et al. 2007. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 129(1):111-122. Janska H, Piechota J, Kwasniak M. 2010. ATP-dependent proteases in biogenesis and maintenance of plant mitochondria. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1797(6/7):1071-1075. Johansson E, Olsson O, Nyström T. 2004. Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. Journal of Biological Chemistry, 279(21):22204-22208. Li L, Nelson C, Fenske R, et al. 2017.Changes in specific protein degradation rates in Arabidopsis thaliana reveal multiple roles of Lon1 in mitochondrial protein homeostasis. Plant Journal, 89(3). doi:10.1111/tpj.13392. Lingard M J, Bartel B. 2009. Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import. Plant Physiology, 151(3):1354-1365. Lynch M, Conery J S. 2000. The evolutionary fate and consequences of duplicate genes. Science, 290(5494):1151-1155. Reumann S. 2004. Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiology, 135(2):783-800. Rigas S, Daras G, Sweetlove L J, et al. 2009a. Mitochondria biogenesis via Lon1 selective proteolysis:who dares to live forever. Plant Signaling & Behavior, 4(3):221-224. Rigas S, Daras G, Laxa M, et al. 2009b. Role of Lon1 protease in post-germinative growth and maintenance of mitochondrial function in Arabidopsis. New Phytologist, 181(3):588-600. Rigas S, Daras G, Tsitsekian D, et al. 2012. The multifaceted role of Lon proteolysis in seedling establishment and maintenance of plant organelle function:living from protein destruction. Physiologia Plantarum, 145(1):215-223. Rigas S, Daras G, Tsitsekian D, et al. 2014. Evolution and significance of the Lon gene family in Arabidopsis organelle biogenesis and energy metabolism. Frontiers in Plant Science, 5(5):533-535. Sellammal R, Robin S, Raveendran M. 2014. Association and heritability studies for drought resistance under varied moisture stress regimes in backcross inbred population of rice. Rice Science, 21(3):150-161. Shah K, Kumar R G, Verma S, et al. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 161(6):1135-1144. Smalle J, Vierstra R D. 2003. The ubiquitin 26S proteasome proteolytic pathway. Annual Review of Plant Biology, 55(1):555-590. van Melderen L, Aertsen A. 2009. Regulation and quality control by Lon-dependent proteolysis. Research in Microbiology, 160(9):645-651. van Wijk K J. 2015. Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes. Annual Review of Plant Biology, 66:75-111. Vashisth T, Johnson L K, Malladi A. 2011. An efficient RNA isolation procedure and identification of reference genes for normalization of gene expression in blueberry. Plant Cell Reports, 30(12):2167-2176. Verslues P E, Lasky J R, Juenger T E, et al. 2014. Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. Plant Physiology, 164(1):144-159. |