林业科学 ›› 2025, Vol. 61 ›› Issue (5): 146-160.doi: 10.11707/j.1001-7488.LYKX20240323
收稿日期:
2024-06-03
出版日期:
2025-05-20
发布日期:
2025-05-24
通讯作者:
张俊红
E-mail:zhangjunhong@zafu.edu.cn
基金资助:
Yiman Zhang,Longjun Lu,Yuting Zhang,Qi Yang,Xiao Han,Zaikang Tong,Junhong Zhang*()
Received:
2024-06-03
Online:
2025-05-20
Published:
2025-05-24
Contact:
Junhong Zhang
E-mail:zhangjunhong@zafu.edu.cn
摘要:
目的: 紫色酸性磷酸酶(PAPs)是应对低磷胁迫的重要酸性磷酸酶,筛选响应低磷胁迫的闽楠PAPs基因,并进行功能验证,探究闽楠适应低磷胁迫下的响应机制,为培育闽楠磷高效利用种质提供理论依据。方法: 基于闽楠全基因组数据,通过blastp同源比对及hmmersearch对闽楠PAPs基因家族进行鉴定及生信分析,与拟南芥和挪威云杉PAPs蛋白序列比对,构建系统进化树。通过对闽楠2个家系(靖安3号和宜丰5号)苗在不同磷含量(0 mmol·L?1 KH2PO4和1 mmol·L?1 KH2PO4)处理下的光合荧光参数、无机磷含量、酸性磷酸酶(ACP)活性及PAPs表达量进行分析,筛选了3个PbPAPs进行后续基因功能研究。结果: 在闽楠全基因组中鉴定到22个PbPAPs基因,均含有Metallophos结构域,不均匀分布于10条染色体,氨基酸长度326~648 aa,大部分基因等电点小于7,外显子数量2~13个,共有2对串联重复和4对片段重复,系统进化树分为3组。低磷胁迫下2个家系苗主根伸长抑制,根毛密度和根表面积增加;净光合速率和Fv/Fm值均显著下降,而ACP活性显著升高;靖安3号叶片无机磷含量先下降后有所上升,宜丰5号变化较平稳,靖安3号处理7天后根无机磷含量显著下降,宜丰5号处理21天根无机磷含量显著下降,而处理后期变化趋势相近。经RT-qPCR分析,低磷诱导PbPAP10a、PbPAP15a和PbPAP26基因表达。分别通过发根农杆菌和根癌农杆菌介导遗传转化获得PbPAP10a、PbPAP15a和PbPAP26基因的过表达闽楠根系及转基因拟南芥,其ACP活性显著增强,无机磷含量显著升高,表明过表达PbPAPs基因可提高ACP活性和无机磷含量。结论: 闽楠对低磷胁迫有较高耐受性,且宜丰5号比靖安3号对低磷胁迫的耐受性更高,适用于瘠薄林地或酸性低磷林地造林,过表达闽楠PAPs基因可提高ACP活性和无机磷含量,助力于闽楠对低磷环境的适应性。
中图分类号:
张漪曼,路龙俊,张毓婷,杨琪,韩潇,童再康,张俊红. 闽楠紫色酸性磷酸酶基因(PAPs)家族分析及3个PAPs在低磷胁迫下的功能[J]. 林业科学, 2025, 61(5): 146-160.
Yiman Zhang,Longjun Lu,Yuting Zhang,Qi Yang,Xiao Han,Zaikang Tong,Junhong Zhang. Analysis of Purple Acid Phosphatases Genes (PAPs) Family in Phoebe bournei and the Functions of Three PAPs under Low Phosphorus Stress[J]. Scientia Silvae Sinicae, 2025, 61(5): 146-160.
表4
PbPAPs蛋白的理化性质"
蛋白 Protein | 基因编号 Gene ID | 氨基酸 Amino acid | 分子量 MW/kDa | 等电点 PI |
PbPAP1 | Phbou.01G1223.1 | 613 | 69.05 | 6.10 |
PbPAP2 | Phbou.01G1352.1 | 646 | 72.98 | 5.46 |
PbPAP9 | Phbou.01G1351.1 | 648 | 73.94 | 6.16 |
PbPAP10a | Phbou.01G2906.1 | 473 | 54.53 | 6.55 |
PbPAP10b | Phbou.12G1471.1 | 456 | 52.32 | 6.70 |
PbPAP15a | Phbou.01G3123.1 | 545 | 62.01 | 5.51 |
PbPAP15b | Phbou.08G1918.1 | 547 | 61.92 | 5.26 |
PbPAP16a | Phbou.01G3288.1 | 376 | 42.08 | 7.13 |
PbPAP16b | Phbou.01G3289.1 | 353 | 39.96 | 6.00 |
PbPAP17a | Phbou.01G3733.1 | 326 | 36.73 | 5.43 |
PbPAP17b | Phbou.02G2250.1 | 329 | 37.38 | 5.25 |
PbPAP18 | Phbou.10G0372.1 | 437 | 49.62 | 5.59 |
PbPAP20 | Phbou.05G2290.1 | 422 | 46.90 | 5.58 |
PbPAP22 | Phbou.04G1339.1 | 441 | 49.96 | 5.89 |
PbPAP23 | Phbou.11G1361.1 | 543 | 60.84 | 5.52 |
PbPAP26 | Phbou.03G0433.1 | 480 | 55.30 | 6.47 |
PbPAP27a | Phbou.01G3074.1 | 615 | 69.27 | 5.85 |
PbPAP27b | Phbou.08G1858.1 | 620 | 69.73 | 6.06 |
PbPAP27c | Phbou.03G0971.1 | 626 | 69.75 | 5.28 |
PbPAP28 | Phbou.03G0037.1 | 402 | 45.51 | 5.80 |
PbPAP29a | Phbou.08G0566.1 | 606 | 66.91 | 8.49 |
PbPAP29b | Phbou.07G1718.1 | 372 | 41.02 | 5.36 |
表5
PbPAPs蛋白的保守结构域"
蛋白 Protein | 保守结构域 Domain | ||
PbPAP1 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP2 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP9 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP10a | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP10b | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP15a | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP15b | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP16a | Metallophos | ||
PbPAP16b | Metallophos | ||
PbPAP17a | Metallophos | ||
PbPAP17b | Metallophos | ||
PbPAP18 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP20 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP22 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP23 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP26 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP27a | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP27b | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP27c | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP28 | Metallophos | ||
PbPAP29a | Metallophos | ||
PbPAP29b | Metallophos |
图9
2个浓度磷浓度处理下转基因拟南芥半定量PCR分析 OE1、OE2为PbPAP10a转基因拟南芥;OE3、OE4为PbPAP15a转基因拟南芥;OE5、OE5为PbPAP26转基因拟南芥;Col代表拟南芥野生型。OE1 and OE2 are PbPAP10a transgenic Arabidopsis thaliana; OE3 and OE4 are PbPAP15a transgenic A. thaliana; OE5 and OE5 are PbPAP26 transgenic A. thaliana. Col represents wildtype A. thaliana."
陈 锡, 陈 莹, 刘晓霞, 等. FaGST基因过量表达获得拟南芥转基因植株. 贵州农业科学, 2022, 50 (7): 21- 25.
doi: 10.3969/j.issn.1001-3601.2022.07.004 |
|
Chen X, Chen Y, Liu X X, et al. Transgenic Arbidopsis thaliana plants with FaGST gene overexpression. Guizhou Agricultural Sciences, 2022, 50 (7): 21- 25.
doi: 10.3969/j.issn.1001-3601.2022.07.004 |
|
丁 洪, 李生秀, 郭庆元, 等. 酸性磷酸酶活性与大豆耐低磷能力的相关研究. 植物营养与肥料学报, 1997, 3 (2): 123- 128.
doi: 10.3321/j.issn:1008-505X.1997.02.005 |
|
Ding H, Li S X, Guo Q Y, et al. Studies on the correlation between acid phosphatase activity and low phosphorus tolerance in soybean. Plant Nutrition and Fertilizer Science, 1997, 3 (2): 123- 128.
doi: 10.3321/j.issn:1008-505X.1997.02.005 |
|
杜普旋, 刘 浩, 胡冬秀, 等. 花生紫色酸性磷酸酶基因家族的鉴定及表达分析. 中国油料作物学报, 2022, 44 (3): 522- 531. | |
Du P X, Liu H, Hu D X, et al. Genome-wide identification and expression analysis of purple acid phosphatase (PAPs) gene family in peanut. Chinese Journal of Oil Crop Sciences, 2022, 44 (3): 522- 531. | |
范辉华, 李建民, 陈永滨, 等. 闽楠光合特性测定分析. 西部林业科学, 2016, 45 (5): 49- 53. | |
Fan H H, Li J M, Chen Y B, et al. Photosynthetic characteristics of Phoebe bournei. Journal of West China Forestry Science, 2016, 45 (5): 49- 53. | |
黄小辉, 夏 鹰, 冯大兰, 等. 缺磷胁迫对核桃幼苗生长及生理特征的影响. 土壤通报, 2022, 53 (3): 613- 622. | |
Huang X H, Xia Y, Feng D L, et al. Effects of phosphorus deficiency stress on growth and physiology of walnut seedlings. Chinese Journal of Soil Science, 2022, 53 (3): 613- 622. | |
刘 浩, 李玉龙, 汤萌萌, 等. 拟南芥miR156与miR399在低磷胁迫中的对话机制初探. 河南农业科学, 2019, 48 (7): 54- 58. | |
Liu H, Li Y L, Tang M M, et al. Initial exploration of cross talk between miR156 and miR399 of Arabidopsis thaliana under low phosphorus stress. Journal of Henan Agricultural Sciences, 2019, 48 (7): 54- 58. | |
刘攀道, 黄 睿, 许文茸, 等. 植物紫色酸性磷酸酶的研究进展. 热带作物学报, 2019, 40 (2): 410- 416.
doi: 10.3969/j.issn.1000-2561.2019.02.028 |
|
Liu P D, Huang R, Xu W R, et al. Research progress of purple acid phosphatase in plants. Chinese Journal of Tropical Crops, 2019, 40 (2): 410- 416.
doi: 10.3969/j.issn.1000-2561.2019.02.028 |
|
庞 欣, 程 远, 郭勤卫, 等. 辣椒紫色酸性磷酸酶基因家族的鉴定与表达特征. 浙江农业学报, 2017, 29 (9): 1498- 1505.
doi: 10.3969/j.issn.1004-1524.2017.09.11 |
|
Pang X, Cheng Y, Guo Q W, et al. Genome-wide identification and expression analysis of purple acid phosphatases genes in pepper. Acta Agriculturae Zhejiangensis, 2017, 29 (9): 1498- 1505.
doi: 10.3969/j.issn.1004-1524.2017.09.11 |
|
钱 方, 胡利娟, 余 婕, 等. 甘蓝型油菜HIPPs基因家族的鉴定与表达分析. 植物遗传资源学报, 2022, 23 (4): 1- 18. | |
Qian F, Hu L J, Yu J, et al. Identification and expression analysis of HIPPs gene family in Brassica napus L. Journal of Plant Genetic Resources, 2022, 23 (4): 1- 18. | |
田 江, 梁翠月, 陆 星, 等. 根系分泌物调控植物适应低磷胁迫的机制. 华南农业大学学报, 2019, 40 (5): 175- 185.
doi: 10.7671/j.issn.1001-411X.201905068 |
|
Tian J, Liang C Y, Lu X, et al. Mechanism of root exudates regulating plant responses to phosphorus deficiency. Journal of South China Agricultural University, 2019, 40 (5): 175- 185.
doi: 10.7671/j.issn.1001-411X.201905068 |
|
田璟鸾. 2013. 水稻紫色酸性磷酸酶Ia亚家族基因的功能研究. 杭州: 浙江大学. | |
Tian J L. 2013. Funcitional analysis of genes in rice purple acid phosphatase in subgroup. Hangzhou: Zhejiang University. [in Chinese] | |
魏 铭, 王鑫伟, 陈 博, 等. 植物紫色酸性磷酸酶基因家族功能研究进展. 植物学报, 2019, 54 (1): 93- 101.
doi: 10.11983/CBB18044 |
|
Wei M, Wang X W, Chen B, et al. Progress in the functional study of the purple acid phosphatase gene family in plants. Chinese Bulletin of Botany, 2019, 54 (1): 93- 101.
doi: 10.11983/CBB18044 |
|
吴梦洁, 洪家都, 李芳燕, 等. 发根农杆菌介导的闽楠遗传转化体系构建与优化. 核农学报, 2023, 37 (8): 1516- 1522.
doi: 10.11869/j.issn.1000-8551.2023.08.1516 |
|
Wu M J, Hong J D, Li F Y, et al. Construction and optimization of genetic transformation system mediated by agrobacterium rhizogenes in Phoebe bournei. Journal of Nuclear Agricultural Sciences, 2023, 37 (8): 1516- 1522.
doi: 10.11869/j.issn.1000-8551.2023.08.1516 |
|
易 双, 聂 治, 张 啸, 等. 玉米紫色酸性磷酸酶(PAPs)基因家族的鉴定与低磷响应特征. 农业生物技术学报, 2015, 23 (3): 281- 290.
doi: 10.3969/j.issn.1674-7968.2015.03.001 |
|
Yi S, Nie Z, Zhang X, et al. Identification of maize (Zea mays) purple acid phosphatase (PAPs) genes family and their characterization responses to phosphorus starvation. Journal of Agricultural Biotechnology, 2015, 23 (3): 281- 290.
doi: 10.3969/j.issn.1674-7968.2015.03.001 |
|
阴超燕. 2019. 茶树和杨树中紫色酸性磷酸酶基因的鉴定及对磷铁胁迫的响应. 南京: 南京林业大学. | |
Yin C Y. 2019. Identification of purple acid phosphatases (PAPs) genes in tea plants and poplar and their expression responses to phosphorus deficency and excess iron. Nanjing: Nanjing Forestry University. [in Chinese] | |
张俊红, 王 洋, 周生财, 等. 闽楠群体遗传结构分析与核心种质库构建. 林业科学, 2024, 60 (1): 68- 79.
doi: 10.11707/j.1001-7488.LYKX20230138 |
|
Zhang J H, Wang Y, Zhou S C, et al. Genetic structure analysis and core germplasm collection construction of Phoebe bournei populations. Scientia Silvae Sinicae, 2024, 60 (1): 68- 79.
doi: 10.11707/j.1001-7488.LYKX20230138 |
|
周梦岩, 何冬梅, 李亚超, 等. 紫色酸性磷酸酶在植物响应低磷胁迫中的作用研究进展. 分子植物育种, 2021, 19 (11): 3763- 3770. | |
Zhou M Y, He D M, Li Y C, et al. Research progress of the role of purple acid phosphatase in plant response to low phosphorus stress. Molecular Plant Breeding, 2021, 19 (11): 3763- 3770. | |
朱亚军. 2017. 闽楠低温胁迫RNA-Seq分析及MYB转录因子家族的鉴定. 杭州: 浙江农林大学. | |
Zhu Y J. 2017. RNA-Seq analysis and identification of MYB transcription factor family in Phoebe bournei under low temperature stress. Hangzhou: Zhejiang A & F University. [in Chinese] | |
Bailey T L, Johnson J, Grant C E, et al. The MEME suite. Nucleic Acids Research, 2015, 43, W39- W49.
doi: 10.1093/nar/gkv416 |
|
Bhadouria J, Giri J. Purple acid phosphatases: roles in phosphate utilization and new emerging functions. Plant Cell Reports, 2022, 41 (1): 33- 51.
doi: 10.1007/s00299-021-02773-7 |
|
Chiou T J, Lin S I. Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology, 2011, 62, 185- 206.
doi: 10.1146/annurev-arplant-042110-103849 |
|
Ding K, Zhang Y T, Yrjälä K, et al. The introduction of Phoebe bournei into Cunninghamia lanceolata monoculture plantations increased microbial network complexity and shifted keystone taxa. Forest Ecology and Management, 2022, 509, 120072.
doi: 10.1016/j.foreco.2022.120072 |
|
Ding K, Zhang Y T, Wang L, et al. Forest conversion from pure to mixed Cunninghamia lanceolata plantations enhances soil multifunctionality, stochastic processes, and stability of bacterial networks in subtropical southern China. Plant and Soil, 2023, 488 (1/2): 411- 429. | |
Dionisio G, Madsen C K, Holm P B, et al. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Plant Physiology, 2011, 156 (3): 1087- 1100.
doi: 10.1104/pp.110.164756 |
|
Dissanayaka D M S B, Plaxton W C, Lambers H, et al. 2018. Molecular mechanisms underpinning phosphorus-use efficiency in rice. Plant, Cell & Environment, 41(7): 1483–1496. | |
Duff S M G, Sarath G, Plaxton W C. The role of acid phosphatases in plant phosphorus metabolism. Physiologia Plantarum, 1994, 90 (4): 791- 800.
doi: 10.1111/j.1399-3054.1994.tb02539.x |
|
Ham B-K, Chen J Y, Yan Y, et al. Insights into plant phosphate sensing and signaling. Current Opinion in Biotechnology, 2018, 49, 1- 9.
doi: 10.1016/j.copbio.2017.07.005 |
|
Han X, Zhang J H, Han S, et al. The chromosome-scale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies. Plant Communications, 2022, 3 (6): 100410.
doi: 10.1016/j.xplc.2022.100410 |
|
Kuang R B, Chan K-H, Yeung E, et al. Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase cctivity, in Arabidopsis. Plant Physiology, 2009, 151 (1): 199- 209.
doi: 10.1104/pp.109.143180 |
|
Li W-Y F, Shao G H, Lam H-M. Ectopic expression of GmPAP3 alleviates oxidative damage caused by salinity and osmotic stresses. New Phytologist, 2008, 178 (1): 80- 91.
doi: 10.1111/j.1469-8137.2007.02356.x |
|
Liang C Y, Wang J X, Zhao J, et al. Control of phosphate homeostasis through gene regulation in crops. Current Opinion in Plant Biology, 2014, 21, 59- 66.
doi: 10.1016/j.pbi.2014.06.009 |
|
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25 (4): 402- 408.
doi: 10.1006/meth.2001.1262 |
|
Olczak M, Morawiecka B, Watorek W. Plant purple acid phosphatases – genes, structures and biological function. Acta Biochimica Polonica, 2003, 50 (4): 1245- 1256.
doi: 10.18388/abp.2003_3648 |
|
McPhie P. The protein protocols handbook. Analytical Biochemistry, 2003, 315 (2): 289. | |
Plaxton W C, Tran H T. Metabolic adaptations of phosphate-starved plants. Plant Physiology, 2011, 156 (3): 1006- 1015.
doi: 10.1104/pp.111.175281 |
|
Robinson W D, Carson I, Ying S, et al. Eliminating the purple acid phosphatase AtPAP26 in Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization. New Phytologist, 2012, 196 (4): 1024- 1029.
doi: 10.1111/nph.12006 |
|
Schenk G, Mitić N, Hanson G R, et al. Purple acid phosphatase: a journey into the function and mechanism of a colorful enzyme. Coordination Chemistry Reviews, 2013, 257 (2): 473- 482.
doi: 10.1016/j.ccr.2012.03.020 |
|
Tian J L, Wang C, Zhang Q, et al. Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice. Journal of Integrative Plant Biology, 2012, 54 (9): 631- 639.
doi: 10.1111/j.1744-7909.2012.01143.x |
|
Tran H T, Qian W, Hurley B A, et al. 2010. Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana. Plant, Cell & Environment, 33(11): 1789–1803. | |
Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003, 157 (3): 423- 447.
doi: 10.1046/j.1469-8137.2003.00695.x |
|
Vineh M A A, Sabet M S, Karimzadeh G. Effect of AtPAP17 and AtPAP26 genes overexpression on yield and yield components under salt stress in Arabidopsis thaliana plant. Environmental Stresses in Crop Sciences, 2021, 2788, 1725. | |
Wang L S, Liu D. Arabidopsis purple acid phosphatase 10 is a component of plant adaptive mechanism to phosphate limitation. Plant Signaling & Behavior, 2012, 7 (3): 306- 310. | |
Wang L S, Liu D. Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants. Plant Science, 2018, 271, 108- 116.
doi: 10.1016/j.plantsci.2018.03.013 |
|
Wang L S, Lu S L, Zhang Y, et al. Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation. Journal of Integrative Plant Biology, 2014, 56 (3): 299- 314.
doi: 10.1111/jipb.12184 |
|
Wang L S, Li Z, Qian W Q, et al. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiology, 2011, 157 (3): 1283- 1299.
doi: 10.1104/pp.111.183723 |
|
Wang X R, Wang Y X, Tian J, et al. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiology, 2009, 151 (1): 233- 240.
doi: 10.1104/pp.109.138891 |
|
Wasaki J, Yamamura T, Shinano T, et al. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant and Soil, 2003, 248 (1/2): 129- 136.
doi: 10.1023/A:1022332320384 |
|
Xie Z M, Fong W P, Tsang W K. Engineering and optimization of phosphate-responsive phytase expression in Pichia pastoris yeast for phytate hydrolysis. Enzyme and Microbial Technology, 2020, 137, 109533.
doi: 10.1016/j.enzmictec.2020.109533 |
|
Zhang J H, Lin Y, Wu F M, et al. Profiling of microRNAs and their targets in roots and shoots reveals a potential miRNA-mediated interaction network in response to phosphate deficiency in the forestry tree Betula luminifera. Frontiers in Genetics, 2021b, 12, 552454.
doi: 10.3389/fgene.2021.552454 |
|
Zhang Q, Wang C, Tian J, et al. 2011. Identification of rice purple acid phosphatases related to posphate starvation signalling. Plant Biology (Stuttgart, Germany), 13(1): 7–15. | |
Zhang W Y, Gruszewski H A, Chevone B I, et al. An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiology, 2008, 146 (2): 431- 440.
doi: 10.1104/pp.107.109934 |
|
Zhang Y T, Ding K, Yrjälä K, et al. Introduction of broadleaf species into monospecific Cunninghamia lanceolata plantations changed the soil Acidobacteria subgroups composition and nitrogen-cycling gene abundances. Plant and Soil, 2021a, 467 (1/2): 29- 46. | |
Zhou X Y, Zhang X P, Li W K, et al. Electronic effect on bimetallic catalysts: cleavage of phosphodiester mediated by Fe(III)-Zn(II) purple acid phosphatase mimics. Inorganic Chemistry, 2020, 59 (17): 12065- 12074.
doi: 10.1021/acs.inorgchem.0c01011 |
|
Zhu S N, Guo Q, Xue Y B, et al. 2024. Impaired glycosylation of GmPAP15a, a root-associated purple acid phosphatase, inhibits extracellular phytate-P utilization in soybean. Plant, Cell and Environment, 47(1): 259–277. |
[1] | 黄锦, 张俊红, 童再康, 杨琪. 人工脱水对闽楠种子萌发特性的影响[J]. 林业科学, 2025, 61(4): 249-256. |
[2] | 张俊红,王洋,周生财,吴小林,吴仁超,杨琪,张毓婷,童再康. 闽楠群体遗传结构分析与核心种质库构建[J]. 林业科学, 2024, 60(1): 68-79. |
[3] | 王妍,冯金玲,吴小慧,黄蓝明,吴娟,陈宇,杨志坚. 施肥对闽楠幼苗光合碳固定的影响[J]. 林业科学, 2022, 58(5): 40-52. |
[4] | 张苗,周生财,吴梦洁,童再康,韩潇,张俊红,程龙军. 闽楠中WRKY家族成员鉴定及缺磷胁迫下表达分析[J]. 林业科学, 2022, 58(2): 133-147. |
[5] | 王晓,韦小丽,吴高殷,陈胜群. CO2浓度升高条件下不同氮素供应对闽楠幼苗光合特性及生长的影响[J]. 林业科学, 2021, 57(4): 173-181. |
[6] | 张扬, 杜琳, 唐贤丰, 刘唤唤, 周功克, 柴国华. 杨树BAG基因的鉴定及表达模式分析[J]. 林业科学, 2019, 55(1): 138-145. |
[7] | 王海波, 龚明, 郭俊云, 辛胡, 唐利洲, 刘潮, 高永, 代冬琴. 麻疯树AP2/ERF基因家族孤儿基因Soloist的克隆与原核表达分析[J]. 林业科学, 2018, 54(9): 60-69. |
[8] | 韩淑梅, 李军, 吕蕊花, 王晓红, 刘长英, 赵爱春, 鲁成, 余茂德. 桑树MLX56基因家族特性、克隆及表达分析[J]. 林业科学, 2015, 51(4): 60-70. |
[9] | 王艺, 王秀花, 吴小林, 张丽珍, 吴利荣, 徐有明, 周志春. 缓释肥加载对浙江楠和闽楠容器苗生长和养分库构建的影响[J]. 林业科学, 2013, 49(12): 57-63. |
[10] | 赵 颖 周志春 金国庆. 马尾松苗木生长和根系性状的GCA/SCA及磷素环境影响*[J]. 林业科学, 2009, 12(6): 27-33. |
[11] | 周志春 谢钰容 金国庆 陈跃 宋振英. 马尾松种源磷效率研究[J]. 林业科学, 2005, 41(4): 25-30. |
[12] | 谢钰容 周志春 廖国华 金国庆 陈跃. 低磷胁迫下马尾松种源酸性磷酸酶活性差异[J]. 林业科学, 2005, 41(3): 58-62. |
[13] | 安新民 张上隆 徐昌杰 陶俊. 柑桔酸性转化酶基因家族成员的克隆及特性分析[J]. 林业科学, 2004, 40(4): 58-62. |
[14] | 吴大荣 朱政德. 福建省罗卜岩自然保护区闽楠种群结构和空间分布格局初步研究[J]. 林业科学, 2003, 39(1): 23-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||