丁家祺, 黄文丽, 刘迎春, 等. 2021. 基于机器学习和多源数据的湘西北森林地上生物量估测. 林业科学, 57(10): 36-48. Ding J Q, Huang W L, Liu Y C, et al. 2021. Estimation of forest aboveground biomass in northwest Hunan Province based on machine learning and multi-source data. Scientia Silvae Sinicae, 57(10): 36-48. [in Chinese] 黄从德, 张 健, 杨万勤, 等. 2008. 四川省及重庆地区森林植被碳储量动态. 生态学报, 28(3): 966-975. Huang C D, Zhang J, Yang W Q, et al. 2008. Dynamics on forest carbon stock in Sichuan Province and Chongqing City. Acta Ecologica Sinica, 28(3): 966-975. [in Chinese] 黄晓娟. 2018. 面向特征选择的Relief算法研究. 苏州: 苏州大学. Huang X J. 2018. Research on relief algorithm for feature selection. Suzhou: Soochow University. [in Chinese] 菅永峰, 韩泽民, 黄光体, 等. 2021. 基于高分辨率遥感影像的北亚热带森林生物量反演. 生态学报, 41(6): 2161-2169. Jian Y F, Han Z M, Huang G T, et al. 2021. Estimation of forest biomass using high spatial resolution remote sensing imagery in north subtropical forests. Acta Ecologica Sinica, 41(6): 2161-2169. [in Chinese] 吕梓晴, 段爱国. 2024. 不同产区杉木生物量与碳储量模型. 林业科学, 60(2): 1-11. Lü Z Q, Duan A G. 2024. Biomass and carbon storage model of Cunninghamia lanceolata in different production areas. Scientia Silvae Sinicae, 60(2): 1-11. [in Chinese] 蒙诗栎, 庞 勇, 张钟军, 等. 2017. WorldView-2纹理的森林地上生物量反演. 遥感学报, 21(5): 812-824. Meng S (L /Y), Pang Y, Zhang Z J, et al. 2017. Estimation of aboveground biomass in a temperate forest using texture information from WorldView-2. National Remote Sensing Bulletin, 21(5): 812-824. [in Chinese] 潘婧靓. 2020. 联合GF: 3 PolSAR数据和Landsat: 8 OLI数据的森林地上生物量估测方法研究. 哈尔滨: 东北林业大学. Pan J L. 2020. Research on forest aboveground biomass estimation methods using combined GF-3 PoISAR data and Landsat-8 OLI data. Harbin: Northeast Forestry University. [in Chinese] 武小军, 周文心, 董永新. 2022. 一种改进的嵌入式特征选择算法及应用. 同济大学学报(自然科学版), 50(2): 153-159. Wu X J, Zhou W X, Dong Y X. 2022. A novel embedded feature selection algorithm and its application. Journal of Tongji University (Natural Science), 50(2): 153-159. [in Chinese] 于晓辉. 2019. 森林生物量遥感估测模型构建中的特征选择方法对比研究. 杭州: 浙江农林大学. Yu X H. 2019. Comparative study of feature selection methods in the construction of remote sensing models for forest biomass estimation . Hangzhou: Zhejiang A&F University. [in Chinese] 张 志, 田 昕, 陈尔学, 等. 2011. 森林地上生物量估测方法研究综述. 北京林业大学学报, 33(5): 144-150. Zhang Z, Tian X, Chen E X, et al. 2011. Review of methods on estimating forest above ground biomass. Journal of Beijing Forestry University, 33(5): 144-150. [in Chinese] 周俊宏, 王子芝, 廖声熙, 等. 2021. 基于GF-1影像的普达措国家公园森林地上生物量遥感估算. 农业工程学报, 37(4): 216-223. Zhou J H, Wang Z Z, Liao S X, et al. 2021. Remote sensing estimation of forest aboveground biomass in Potatso National Park using GF-1 images. Transactions of the Chinese Society of Agricultural Engineering, 37(4): 216-223. [in Chinese] 朱教君, 王高峰, 张怀清, 等. 2024. 关于“气候智慧林业” 研究的思考. 林业科学, 60(7): 1-7. Zhu J J, Wang G F, Zhang H Q, et al. 2024. On the research of climate-smart forestry. Scientia Silvae Sinicae, 60(7): 1-7. [in Chinese] Afreixo V, Cabral J, Macedo P. 2023. Comparison of feature selection methods in regression modeling: a simulation study. Computational Science and Its Applications-ICCSA 2023 Workshops, 150-159. Altman N. 1992. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46: 175-185. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. 2016. Feature selection for high-dimensional data. Progress in Artificial Intelligence, 5: 65-75. Breiman L. 2001. Random forests. Machine Learning, 45: 5-32. Brovkina O, Novotny J, Cienciala E, et al. 2017. Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe. Ecological Engineering, 100: 219-230. Chen T Q, Guestrin C, Chen T Q, et al. 2016. XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 785-794. Dong H, Xu X, Wang L, et al. 2018. Gaofen-3 PolSAR image classification via XGBoost and polarimetric spatial information. Sensors, 18(2): 611. Dube T, Mutanga O. 2015. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 101: 36-46. Fassnacht F E, Hartig F, Latifi H, et al. 2014. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 154: 102-114. Freeman E A, Moisen G G, Coulston J W, et al. 2016. Random forests and stochastic gradient boosting for predicting tree canopy cover: comparing tuning processes and model performance. Canadian Journal of Forest Research, 46(3): 323-339. Friedman J H. 2001. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5): 1189-1232. Gitelson A A, Kaufman Y J, Stark R, et al. 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1): 76-87. Guyon I, Elisseeff A. 2003. An introduction to variable and feature selection. Journal of Machine Learning Research, 3: 1157-1182. Guyon I, Weston J, Barnhill S, et al. 2002. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1): 389-422. Huang H J, Wu D S, Fang L M, et al. 2022. Comparison of multiple machine learning models for estimating the forest growing stock in large-scale forests using multi-source data. Forests, 13(9): 1471. Huete A, Didan K, Miura T, et al. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1/2): 195-213. Huete A R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3): 295-309. Jin Q W, Fan X T, Liu J, et al. 2020. Estimating tropical cyclone intensity in the South China Sea using the XGBoost model and FengYun satellite images. Atmosphere, 11(4): 423. Jordan C F. 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4): 663-666. Kira K, Rendell L A. 1992. A practical approach to feature selection. Machine Learning Proceedings 1992, Morgan Kaufmann, 249-256. Kohavi R, John G H. 1997. Wrappers for feature subset selection. Artificial Intelligence, 97(1/2): 273-324. Konstantinavičienė J, Vitunskienė V. 2023. Definition and classification of potential of forest wood biomass in terms of sustainable development: a review. Sustainability, 15(12): 9311. Li X H. 2013. Using “random forest” for classification and regression. Chinese Journal of Applied Entomology, 50(4): 1190-1197. Liu H, Setiono R. 1996. A probabilistic approach to feature selection — a filter solution. International Conference on Machine Learning, 1-9. Qi J, Chehbouni A, Huete A R, et al. 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2): 119-126. Richardson A J, Wiegand C L. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43(12): 1541-1552. Rouse J W, Haas R H, Schell J A, et al. 1974. Monitoring vegetation systems in the great plains with ERTS. NASA Special Publication, 351(1): 309. Tibshirani R. 2011. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(3): 273-282. Vabalas A, Gowen E, Poliakoff E, et al. 2019. Machine learning algorithm validation with a limited sample size. PLoS One, 14(11): e0224365. Verma R K, Sharma L K, Lele N. 2023. AVIRIS-NG hyperspectral data for biomass modeling: from ground plot selection to forest species recognition. Journal of Applied Remote Sensing, 17(1): 014522-014522. Zhang H, Song T Q, Wang K L, et al. 2014. Biomass and carbon storage in an age-sequence of Cyclobalanopsis glauca plantations in southwest China. Ecological Engineering, 73: 184-191. Zhang Y L, Wang N, Wang Y L, et al. 2023. A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing. GIScience & Remote Sensing, 60(1): 2163574. Zhu T T. 2020. Analysis on the applicability of the random forest. Journal of Physics: Conference Series, 1607(1): 012123.
|