曹国军, 李嘉昕, 赵凤君, 等. 2022. 森林计划烧除的PM2.5排放时空过程模拟及其对空气质量的影响. 林业科学, 58(8): 63-75. Cao G J, Li J X, Zhao F J, et al. 2022. Simulation of the spatiotemporal process of PM2.5 emission from prescribed burning of forest and its impacts on air quality. Scientia Silvae Sinicae, 58(8): 63-75. [in Chinese] 陈 兵, 赵凤君, 范太云, 等. 2023. 西昌市森林防火综合阻隔网空间布局. 林业科学, 59(9): 127-138. Chen B, Zhao F J, Fan T Y, et al. 2023. Spatial distribution of forest fire prevention comprehensive obstructing network in Xichang City. Scientia Silvae Sinicae, 59(9): 127-138. [in Chinese] 董志南, 郑拴宁, 赵会兵, 等. 2015. 基于空间插值的风场模拟方法比较分析. 地球信息科学学报, 17(1): 37-44. Dong Z N, Zheng S N, Zhao H B, et al. 2015. Comparative analysis of methods of wind field simulation based on spatial interpolation. Journal of Geo-Information Science, 17(1): 37-44. [in Chinese] 冯 林, 傅 军, 施红辉, 等. 2018. 山体地形中粗糙度对风速的影响研究. 太阳能学报, 39(12): 3577-3583. Feng L, Fu J, Shi H H, et al. 2018. Study on influence of roughness on wind speed in mountain terrain. Acta Energiae Solaris Sinica, 39(12): 3577-3583. [in Chinese] 高 超, 林红蕾, 胡海清, 等. 2020. 我国林火发生预测模型研究进展. 应用生态学报, 31(9): 3227-3240. Gao C, Lin H L, Hu H Q, et al. 2020. A review of models of forest fire occurrence prediction in China. Chinese Journal of Applied Ecology, 31(9): 3227-3240. [in Chinese] 金 森, 王晓红, 于宏洲. 2012. 林火行为预测和森林火险预报中气象场的插值方法. 中南林业科技大学学报, 32(6): 1-7. Jin S, Wang X H, Yu H Z. 2012. A review on weather data interpolation methods used in forest fire danger forecast and behavior modelling. Journal of Central South University of Forestry & Technology, 32(6): 1-7. [in Chinese] 巨文珍, 韩斐扬, 彭泊林, 等. 2024. 广西林火发生动态及气象影响因素研究. 森林工程, 40(2): 77-84. Ju W Z, Han F Y, Peng B L, et al. 2024. Study on the dynamics and meteorological influencing factors of forest fire in Guangxi. Forest Engineering, 40(2): 77-84. [in Chinese] 李春梅, 孟庆祥, 崔卫红. 2023. 基于WRF模式研究动态风场对林火蔓延预测的影响: 以西昌“3·30” 森林火灾为例. 科学技术与工程, 23(11): 4579-4585. Li C M, Meng Q X, Cui W H. 2023. Impact of dynamic wind flow behavior on forest fire spread using WRF model: a case study of “3·30” forest fire in Xichang. Science Technology and Engineering, 23(11): 4579-4585. [in Chinese] 李 鸽, 刘 潇, 朱红春, 等. 2021. 基于元胞自动机的崂山林火蔓延模拟. 地理空间信息, 19(12): 37-39, 35. Li G, Liu X, Zhu H C, et al. 2021. Simulation of forest fire spread in Laoshan mountain based on cellular automata. Geospatial Information, 19(12): 37-39, 35. [in Chinese] 刘琰琰. 2017. 气象要素插值的空间化精度提高方法研究. 气象科学, 37(2): 278-282. Liu Y Y. 2017. Analysis of spatial interpolation methods for meteorological elements anomaly. Journal of the Meteorological Sciences, 37(2): 278-282. [in Chinese] 吕振峰, 李恒阳, 王达达, 等. 2015. 复杂地形对风速分布影响的数值模拟研究. 能源工程, 35(1): 31-36. Lv Z F, Li H Y, Wang D D, et al. 2015. Numerical simulation study on the impact about wind speed distribution in complex terrain. Energy Engineering, 35(1): 31-36. [in Chinese] 毛贤敏. 1993. 风和地形对林火蔓延速度的作用. 应用气象学报, 4(1): 100-104. Mao X M. 1993. The influence of wind and relief on the speed of the forest fire spreading. Quarterly Journal of Applied Meteorology, 4(1): 100-104. [in Chinese] 邵文波. 2009. 风场复杂地形流动的数值模拟及微观选址. 北京: 华北电力大学. Shao W B. 2009. Numerical simulation of flow over complex wind farm terrains and the micrositing. Beijing: North China Electric Power University. [in Chinese] 史婷婷, 杨晓梅, 张 涛, 等. 2014. 基于TRMM数据的福建省降水时空格局BME插值分析. 地球信息科学学报, 16(3): 470-481. Shi T T, Yang X M, Zhang T, et al. 2014. Spatiotemporal analytical research of precipitation in Fujian Province based on TRMM and BME. Journal of Geo-Information Science, 16(3): 470-481. [in Chinese] 孙 园. 2023. 基于WRF与元胞自动机的林火蔓延模拟方法. 哈尔滨: 东北林业大学. Sun Y. 2023. A simulation method of forest fire spread based on WRF and cellular automata. Harbin: Northeast Forestry University. [in Chinese] 田玉萍, 金成宇, 王 斌, 等. 2024. 基于改进的王正非模型结合元胞自动机的林火蔓延预测. 中南林业科技大学学报, 44(5): 14-25. Tian Y P, Jin C Y, Wang B, et al. 2024. Forest fire spread prediction based on improved Wang Zhengfei model combined with cellular automata. Journal of Central South University of Forestry & Technology, 44(5): 14-25. [in Chinese] 王雪姣, 王 森, 吉春容, 等. 2018. 1961—2015年新疆0cm地温的时空分布特征及突变分析. 干旱区资源与环境, 32(4): 165-169. Wang X J, Wang S, Ji C R, et al. 2018. Spatial-temporal characteristics and mutation analysis of ground temperature in Xinjiang from 1961 to 2015. Journal of Arid Land Resources and Environment, 32(4): 165-169. [in Chinese] 王雪松, 刘 磊. 2019. 基于SRTM DEM数据的云南省地形起伏度及其与风速关系研究. 甘肃科学学报, 31(6): 30-35, 67. Wang X S, Liu L. 2019. Study on the land relief in Yunnan Province and its relationship with wind speed based on SRTM DEM data. Journal of Gansu Sciences, 31(6): 30-35, 67. [in Chinese] 王正非. 1992. 通用森林火险级系统. 自然灾害学报, 1(3): 39-44. Wang Z F. 1992. Current forest fire danger rating system. Journal of Natural Disasters, 1(3): 39-44. [in Chinese] 徐奔奔, 王炜烨, 陈良富, 等. 2022. 基于VIIRS火点数据和FARSITE系统的森林火灾蔓延模拟. 遥感学报, 26(8): 1575-1588. Xu B B, Wang W Y, Chen L F, et al. 2022. Forest fire spread simulation based on VIIRS active fire data and FARSITE model. National Remote Sensing Bulletin, 26(8): 1575-1588. [in Chinese] 杨福龙, 曹 佳, 白 夜. 2016. 基于元胞自动机的林火蔓延三维模拟仿真研究. 计算机工程与应用, 52(19): 37-41. Yang F L, Cao J, Bai Y. 2016. Study on simulation of three dimensional simulation of forest fire spread based on cellular automaton. Computer Engineering and Applications, 52(19): 37-41.[in Chinese] 杨青青, 陈小花, 陈宗铸, 等. 2024. 基于MODIS数据的海南岛森林火灾时空分布特征分析. 林业科技通讯, (1): 22-26. Yang Q Q, Chen X H, Chen Z C, et al. 2024. Temporal and spatial distribution characteristics of forest fires in Hainan Island based on MODIS data. Forest Science and Technology, (1): 22-26. [in Chinese] 张金善, 钟 中, 黄 瑾. 2005. 中尺度大气模式MM5简介. 海洋预报, (1): 31-40. Zhang J S, Zhong Z, Huang J. 2005. Mesoscale atmospheric model MM5 introduction. Marine Forecasts, (1): 31-40. [in Chinese] 张全文, 杨永崇, 王 涛, 等. 2021. 基于元胞自动机的高原林火蔓延三维可视化模拟. 科学技术与工程, 21(4): 1295-1299. Zhang Q W, Yang Y C, Wang T, et al. 2021. Three-dimensional visual simulation of forest fire spread based on cellular automata. Science Technology and Engineering, 21(4): 1295-1299. [in Chinese] 张 威, 纪 然. 2019. 辽宁省地表温度时空变化及影响因素. 生态学报, 39(18): 6772-6784. Zhang W, Ji R. 2019. Analysis of spatio-temporal variation and factors influencing surface temperature in Liaoning Province. Acta Ecologica Sinica, 39(18): 6772-6784. [in Chinese] 张晓磊, 赵 明, 何 屏, 等. 2015. 距地面不同高度下复杂地形对风速影响的数值模拟研究. 工业加热, 44(6): 50-52. Zhang X L, Zhao M, He P, et al. 2015. Complex terrain under different height from ground numerical simulation study of the impact of wind speed. Industrial Heating, 44(6): 50-52. [in Chinese] 赵冰雪, 王 雷, 程东亚. 2017. 安徽省气象数据空间插值方法比较与分布特征. 水土保持研究, 24(3): 141-145. Zhao B X, Wang L, Cheng D Y. 2017. Comparison of spatial interpolation method for meteorological data and distribution characteristic in Anhui province. Research of Soil and Water Conservation, 24(3): 141-145. [in Chinese] 赵 璠, 舒立福, 周汝良, 等. 2017. 西南林区森林火灾火行为模拟模型评价. 应用生态学报, 28(10): 3144-3154. Zhao F, Shu L F, Zhou R L, et al. 2017. Evaluating fire behavior simulators in southwestern China forest area. Chinese Journal of Applied Ecology, 28(10): 3144-3154. [in Chinese] 赵 亮, 刘鹏举, 周宇飞, 等. 2010. 复杂地形下风场插值与林火蔓延模拟应用研究. 北京林业大学学报, 32(4): 12-16. Zhao L, Liu P J, Zhou Y F, et al. 2010. Wind field interpolation over complex terrain and its application in the simulation of forest fire spreading. Journal of Beijing Forestry University, 32(4): 12-16. [in Chinese] 甄 贞, 赵颖慧, 李凤日. 2009. 基于GIS森林火险等级预报系统数据处理技术. 东北林业大学学报, 37(11): 113-117. Zhen Z, Zhao Y H, Li F R. 2009. Data processing techniques for GIS-based forecasting system of forest fire weather ranks. Journal of Northeast Forestry University, 37(11): 113-117. [in Chinese] 智协飞, 吴柏莹, 罗忠红, 等. 2023. 华东地区地面和高空风场的多模式集成精细化预报研究. 大气科学学报, 46(6): 917-927. Zhi X F, Wu B Y, Luo Z H, et al. 2023. Multimodel ensemble forecasts of high-resolution surface and high-level wind forecasts over East China. Transactions of Atmospheric Sciences, 46(6): 917-927. [in Chinese] 周宇飞, 刘鹏举, 唐小明. 2010. 林火蔓延模型模拟空间精度评价研究. 北京林业大学学报, 32(2): 21-26. Zhou Y F, Liu P J, Tang X M. 2010. Space accuracy evaluation of forest fire spreading model. Journal of Beijing Forestry University, 32(2): 21-26. [in Chinese] Ali A A, Carcaillet C, Bergeron Y. 2009. Long-term fire frequency variability in the eastern Canadian boreal forest: the influences of climate vs. local factors. Global Change Biology, 15(5): 1230-1241. Bountzouklis C, Fox D M, Di Bernardino E. 2022. Environmental factors affecting wildfire-burned areas in south-eastern France, 1970-2019. Natural Hazards and Earth System Sciences, 22: 1181-1200. Byari M, Bernoussi A, Jellouli O, et al. 2022. Multi-scale 3D cellular automata modeling: Application to wildland fire spread. Chaos, Solitons & Fractals, 164: 112653. Collin A, Bernardin D, Séro-Guillaume O. 2011. A physical-based cellular automaton model for forest-fire propagation. Combustion Science and Technology, 183: 347-369. Doerr S H, Santín C. 2016. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 371(1696): 20150345 Encinas A H, Encinas L H, White S H, et al. 2007. Simulation of forest fire fronts using cellular automata. Advances in Engineering Software, 38(6): 372-378. Farguell À, Cortés A, Margalef T, et al. 2017. Data resolution effects on a coupled data driven system for forest fire propagation prediction. Procedia Computer Science, 108: 1562-1571. Flannigan M D, Krawchuk M A, de Groot W J, et al. 2009. Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 18(5): 483. Hassan A, Accary G, Sutherland D, et al. 2024. Physics-based modelling of wind-driven junction fires. Fire Safety Journal, 142: 104039. He J W, Zhang H F, Zhou L. 2023. Numerical simulation of wind characteristics in complex mountains with focus on terrain boundary transition curve. Atmosphere, 14(2): 230. Hoadley J L, Rorig M L, Bradshaw L, et al. 2006. Evaluation of MM5 model resolution when applied to prediction of National Fire Danger Rating indexes. International Journal of Wildland Fire, 15(2): 147-154. Hong H Y, Tsangaratos P, Ilia I, et al. 2018. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. The Science of the Total Environment, 630: 1044-1056. Jellouli O, Bernoussi A S. 2022. The impact of dynamic wind flow behavior on forest fire spread using cellular automata: Application to the watershed BOUKHALEF (Morocco). Ecological Modelling, 468: 109938. Kim Y H, Bettinger P, Finney M. 2009. Spatial optimization of the pattern of fuel management activities and subsequent effects on simulated wildfires. European Journal of Operational Research, 197(1): 253-265. Kumar S, Kumar A. 2022. Hotspot and trend analysis of forest fires and its relation to climatic factors in the western Himalayas. Natural Hazards, 114(3): 3529-3544. Lawson B, Stocks B, Alexander M, et al. 1985. A system for predicting fire behavior in Canadian forests. Eighth Conference on Fire and Forest Meteorology. Society of American Foresters, Detroit. Mangiameli M, Mussumeci G, Cappello A. 2021. Forest fire spreading using free and open-source GIS technologies. Geomatics, 1: 50-64. Parvar Z, Saeidi S, Mirkarimi S. 2024. Integrating meteorological and geospatial data for forest fire risk assessment. Journal of Environmental Management, 358: 120925. Robinson D, Brambilla S, Oliveto J, et al. 2023. The effect of terrain-influenced winds on fire spread in QUIC-Fire. Environmental Modelling & Software, 167: 105727. Rossa C G, Fernandes P M. 2018. On the fire-spread rate influence of some fuel bed parameters derived from Rothermel’s model thermal energy balance. Šumarski list, 142(1/2): 77-80. Sá A, Benali A, Pinto R, et al. 2014. Improving wildfire spread simulations using MODIS active fires: the FIRE-MODSAT project. Advances in forest fire research, 811–822. Sanjuan G, Brun C, Margalef T, et al. 2014. Wind field uncertainty in forest fire propagation prediction. Procedia Computer Science, 29: 1535-1545. Sun W Y, Mu X M, Song X Y, et al. 2016. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960-2013 under global warming. Atmospheric Research, 168: 33-48. Sun X, Li N, Chen D Q, et al. 2024. A forest fire prediction model based on cellular automata and machine learning. IEEE Access, 12: 55389-55403. Tan L, de Callafon R A, Block J, et al. 2021. Improving wildfire simulations by estimation of wildfire wind conditions from fire perimeter measurements. Computational Science - ICCS 2021. Cham: Springer International Publishing: 231-244. Tian Y P, Wu Z C, Li M Z, et al. 2022. Forest fire spread monitoring and vegetation dynamics detection based on multi-source remote sensing images. Remote Sens, 14(18): 4431. Viedma O, Chico F, Fernández J J, et al. 2020. Disentangling the role of prefire vegetation vs. burning conditions on fire severity in a large forest fire in SE Spain. Remote Sensing of Environment, 247: 111891. William C S, Joseph B K, Jimy D, et al. 2019. A description of the advanced research WRF model version 4. National Center for Atmospheric Research, 148. Wu Z C, Wang B, Li M Z, et al. 2022. Simulation of forest fire spread based on artificial intelligence. Ecological Indicators, 136: 108653. Zhao J, Wang J M, Meng Y F, et al. 2023. Spatiotemporal patterns of fire-driven forest mortality in China. Forest Ecology and Management, 529: 120678.
|