欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (11): 138-149.doi: 10.11707/j.1001-7488.LYKX20250108

• 研究论文 • 上一篇    下一篇

4种典型林业剩余物基生物炭理化性质对不同热解温度的响应

韩婉禛,刘蕾,成洁*(),孙启武,董玉红,厚凌宇,张润哲   

  1. 林木资源高效生产全国重点实验室 国家林业和草原局林木培育重点实验室 中国林业科学研究院林业研究所 北京 100091
  • 收稿日期:2025-02-26 修回日期:2025-07-21 出版日期:2025-11-25 发布日期:2025-12-11
  • 通讯作者: 成洁 E-mail:15635845550@163.com
  • 基金资助:
    国家自然科学基金项目(42407194);国家重点研发计划项目(2023YFF1304404)。

Response of Physicochemical Properties of Four Typical Forest Residue-based Biochars to Different Pyrolysis Temperatures

Wanzhen Han,Lei Liu,Jie Cheng*(),Qiwu Sun,Yuhong Dong,Lingyu Hou,Runzhe Zhang   

  1. State Key Laboratory of Efficient Production of Forest Resources Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration Research Institute of Forestry Chinese Academy of Forestry Beijing 100091
  • Received:2025-02-26 Revised:2025-07-21 Online:2025-11-25 Published:2025-12-11
  • Contact: Jie Cheng E-mail:15635845550@163.com

摘要:

目的: 探讨不同原料来源及热解温度对林业剩余物生物炭理化性质的影响机制,旨在为定向制备林业剩余物基生物炭提供理论依据。方法: 选用杨树、桉树、杉木和马尾松枝条为原料,分别在300、400、500和600 ℃热解温度下制备生物炭。利用扫描电镜、X射线多晶衍射等方法对生物炭进行表征,分析孔隙结构及表面官能团等理化特性。结果: 热解温度对林业剩余物基生物炭的理化性质造成显著差异。随着热解温度从300 ℃升至600 ℃,杨树、桉树、杉木和马尾松枝条生物炭产率均呈下降趋势。杉木枝条生物炭在600 ℃时的比表面积达到最大值449.65 m2·g–1,同时其微孔孔容和微孔比表面积也达到最大值。以杉木和马尾松为原料制备的生物炭具有较高的比表面积和孔隙度,相比之下,以杨树和桉树为原料制备的生物炭则较低。马尾松与杉木生物炭热重分析曲线趋势一致,其中300 ℃条件下制备的生物炭热稳定性最差,600 ℃条件下稳定性最佳。此外,杉木和马尾松生物炭的XRD图谱中CaCO3衍射峰较弱,表明其方解石含量和结晶度均较低。结论: 本研究阐明了4种典型林业剩余物基生物炭对不同热解温度的响应机制,揭示了热解温度和原料类型是影响林业剩余物基生物炭产率和理化性质的关键因素。通过对热解温度和原料的有效调控,可以定向制备不同功能的林业剩余物基生物炭,以满足不同领域对生物炭性能的特定需求,为林业剩余物的资源化利用提供新的途径。

关键词: 生物炭, 热解温度, 理化特性, 林业剩余物

Abstract:

Objective: This study aims to explore the influence mechanism of different raw material sources and pyrolysis temperatures on the physicochemical properties of forest residue biochar, providing a theoretical basis for the directional preparation of forest residue-based biochar. Method: In this study, branches of Populus spp. (poplar), Eucalyptus robusta (eucalyptus), Cunninghamia lanceolata (Chinese fir), and Pinus massoniana (masson pine) were selected as raw materials, and biochar was prepared at different pyrolysis temperatures of 300, 400, 500, and 600 ℃. The biochar was characterized using scanning electron microscopy, X-ray diffraction, and other methods to analyze its physicochemical properties such as pore structure and surface functional groups. Result: The results showed that the pyrolysis temperature significantly affected the physicochemical properties of the biochar derived from forest residues. As the pyrolysis temperature increased from 300 ℃ to 600 ℃, the yield of biochar from the branches of poplar, eucalyptus, Chinese fir, and masson pine all showed a decreasing trend. The biochar from Chinese fir branches had the highest specific surface area of 449.65 m2·g–1 at 600 ℃, with the largest micropore volume and micropore-specific surface area. Biochar produced from Chinese fir and masson pine had higher specific surface areas and porosity, while biochar from poplar and eucalyptus had lower specific surface area and porosity. The thermal loss behavior of biochar from masson pine and Chinese fir was similar, showing that the biochar prepared at 300 ℃ had the poorest thermal stability, while that prepared at 600 ℃ had the best stability. In addition, the XRD spectra of biochar from Chinese fir and masson pine showed weak diffraction peaks of CaCO3, indicating that their calcite content and crystallinity were relatively low. Conclusion: This study elucidates the response mechanisms of four typical biochars from different forest residues to different pyrolysis temperatures. It also reveals that both pyrolysis temperature and raw material type are key factors affecting the biochar yield and physicochemical properties. By effectively controlling the pyrolysis temperature and raw materials, biochar with different functions can be tailored to meet the specific needs of various fields, providing a new pathway for the resource utilization of forest residues.

Key words: biochar, pyrolysis temperature, physicochemical property, forest residues

中图分类号: