林业科学 ›› 2025, Vol. 61 ›› Issue (10): 1-14.doi: 10.11707/j.1001-7488.LYKX20250425
• 特邀综述 •
收稿日期:2025-07-03
出版日期:2025-10-25
发布日期:2025-11-05
通讯作者:
汪阳东
E-mail:wangyangdong@caf.ac.cn
基金资助:
Liwen Wu1,Guolei Li2,Qinsong Yang2,Jiaxi Wang2,Yangdong Wang1,*(
)
Received:2025-07-03
Online:2025-10-25
Published:2025-11-05
Contact:
Yangdong Wang
E-mail:wangyangdong@caf.ac.cn
摘要:
栎树为壳斗科栎属植物的总称,广泛分布于北半球的亚洲、欧洲、北美洲和非洲大陆,也是我国从温带到热带阔叶林的重要建群种之一,面积和蓄积量均位居全国首位。同时,作为重要的材用、工业用、果用和生态用等多用途树种,栎树资源的系统开发和可持续利用已成为林业科研的重要攻关方向,受到越来越多的关注。然而,栎树在我国的实际生产应用中存在重要应用型性状系统评价较少、优良品种缺乏、繁育体系不健全以及次生林经营方式不规范等问题。自20世纪30年代以来,相关科研人员在栎树多样性与适应性进化、种质资源收集和性状评价、新品种与良种选育、种苗繁育以及森林培育经营等方面开展了一系列研究,取得了重要研究成果。本研究在充分对比国外栎树对应研究现状的基础上,系统梳理我国栎树科学研究各方面的核心进展情况,探讨当前研究中存在的不足和问题,并对未来栎树的研究发展方向提出建议与展望,以期为我国栎树资源利用以及珍贵树种产业发展提供参考。
中图分类号:
吴立文,李国雷,杨钦淞,王佳茜,汪阳东. 栎树研究进展与展望[J]. 林业科学, 2025, 61(10): 1-14.
Liwen Wu,Guolei Li,Qinsong Yang,Jiaxi Wang,Yangdong Wang. Research Progress and Prospect on Oak Trees[J]. Scientia Silvae Sinicae, 2025, 61(10): 1-14.
表1
国内部分栎树嫁接繁殖体系"
| 物种 Species | 接穗 Scion | 砧木 Rootstock | 嫁接方式 Grafting method | 成活率 Survival rate (%) | 保存率 Conservation rate (%) | 参考文献 Reference |
| 北美红栎 Q. rubra | 1月下旬采集的当年生接穗 Current-year scions collected in late January | 蒙古栎 Q. mongolica | 木质部芽接 Xylem bud grafting | 84.67 | 78.00 | |
| 1年生枝条 One-year-old branch | 麻栎 Q. acutissima | 劈接 Splitting | 87.5 | — | ||
| 4年生幼树的当年生枝条 Current-year branches of 4-year-old saplings | 麻栎 Q. acutissima | 切接法 Cut-grafting | 99. 34 | 89. 40 | ||
| 猩红栎 Q. coccinea | 4年生幼树的当年生枝条 Current-year branches of 4-year-old saplings | 麻栎 Q. acutissima | 切接法 Cut-grafting | 98. 14 | 32. 28 | |
| 沼生栎 Q. palustris | 4年生幼树的当年生枝条 Current-year branches of 4-year-old saplings | 麻栎 Q. acutissima | 切接法 Cut-grafting | 94. 15 | 39. 13 | |
| 柳叶栎 Q. phellos | 4年生幼树的当年生枝条 Current-year branches of 4-year-old saplings | 麻栎 Q. acutissima | 切接法 Cut-grafting | 92. 86 | 71. 79 | |
| 纳塔栎 Q. texana | 4年生幼树的当年生枝条 Current-year branches of 4-year-old saplings | 麻栎 Q. acutissima | 切接法 Cut-grafting | 76. 09 | 29. 29 | |
| 舒玛栎、纳塔栎 Q. shumardii, Q. texana | 1~3年生穗条 1–3 years old spikes | 白栎、舒玛栎、纳塔栎 Q. fabri, Q. shumardii, Q. texana | 芽接、枝接 Bud grafting, Stem grafting | 12~32 | — | |
| 蒙古栎 Q. mongolica | 10年生成年树的当年生枝条 Current-year branches of 10-year-old trees | 蒙古栎 Q. mongolica | 舌接 Whip grafting | 83.5 | — | |
| 成年树的1年生枝条 One-year-old branch of adult trees | 槲树 Q. dentata | 劈接 Splitting | 56 | — | ||
| 成年树当年生枝条 Current-year branches of adult trees | 蒙古栎 Q. mongolica | 插皮接 Bark grafting | 51 | — | ||
| 2年生幼树的当年生枝条 Current-year branches of 2-year-old saplings | 栓皮栎 Q. variabilis | 劈接 Splitting | 37 | — | ||
| 5年生树的当年生枝条 Current-year branches of 5-year-old trees | 蒙古栎 Q. mongolica | 嵌芽接 Veneer budding | 64.2 | — | ||
| 槲树 Q. dentata | 成年树的当年生枝条 Current-year branches of adult trees | 槲树 Q. dentata | 插皮接 Bark grafting | 68 | — | |
| 栓皮栎 Q. variabilis | 2年生幼树的当年生枝条 Current-year branches of 2-year-old saplings | 栓皮栎 Q. variabilis | 劈接 Splitting | 56 | — | |
| 麻栎 Q. acutissima | 5~10年生树的当年生枝条 Current-year branches of 5–10 years old trees | 麻栎 Q. acutissima | 劈接 Splitting | 64.9 | — | |
| 25年生树的当年生枝条 Current-year branches of 25-year-old trees | 麻栎 Q. acutissima | 切接 Cut-grafting | 90 | — |
表2
部分栎树组织培养体系①"
| 物种 Species | 初代培养基 Initial medium | 继代培养基 Subculture medium | 芽诱导率 Bud induction rate (%) | 生根培养基 Rooting culture medium | 生根率 Rooting rate (%) | 参考文献 Reference |
| 夏栎 Q. robur | WPM + 0.3 mg·L?1 6-BA + 100 mg·L?1 头孢霉素(Cephalosporin) | >80 | 1/2MS + 0.1 mg·L?1 NAA | >80 | ||
| — | 25 mg·L?1 IBA处理24 h后移至添加有1%活性炭的无激素培养基内 After treatment with 25 mg·L?1 IBA for 24 h, they were transferred to hormone-free medium supplemented with 1% activated carbon | 13.0~ 85.8 | ||||
| 欧洲栓皮栎 Q. suber | WPM + 0.6 mg·L?1 6-BA + 0.5 g·L?1 PVP | 68.89 | WPM + 0.2 mg·L?1 1BA + 0.2 mg·L?1 NAA | 66.67 | ||
| 北美红栎 Q. rubra | WPM + 4.4 μmol·L–1 6-BA + 0.29 μmol·L–1 GA3 + 500 mg·L?1干酪素水解物(Casein hydrolysate) | WPM + 0.44 μmol·L–1 6-BA + 0.29 μmol·L–1 GA3 | 73.3 | WPM + 4.9 mmol·L–1 IBA | 30 | |
| WPM + 3 mg·L?1 6-BA + 3 mg·L?1 KT +0.05 mg·L?1 2,4-D + 0.05 mg·L?1 NAA | 53.33 | — | ||||
| — | 25 mg·L?1 IBA处理24 h后移至添加有1%活性炭的无激素培养基内 After treatment with 25 mg·L?1 IBA for 24 h, they were transferred to hormone-free medium supplemented with 1% activated carbon | 16.3~ 66.4 | ||||
| 冬青栎 Q. ilex | WPM + 0.44 μmol·L–1 6-BA | WPM + 0.22 μmol·L–1 6-BA,后移至WPM + 0.044 μmol·L–1 6-BA + 0.46 μmol·L–1玉米素 WPM + 0.22 μmol·L–1 6-BA was shifted to WPM + 0.044 μmol·L–1 6-BA + 0.46 μmol·L–1 zeatin | 10.9~72.9 | 1/2 MS + 14.8~24.6 μmol·L–1 IBA + 0.54 μmol·L–1 NAA | 18.8 | |
| 弗吉尼亚栎 Q. virginiana | 1/4MS + 1.20 mg·L?1 6-BA | — | 1/4MS +0.50 mg·L?1 IBA + 0.50 mg·L?1 NAA | 53.33 | ||
| 葡萄牙栎 Q. lusitanica | WPM + 0.1 mg·L?1 6-BA或者0.2 mg·L?1 6-BA + 0.2 mg·L?1 玉米素+ 0.5 mg·L?1 IAA WPM + 0.1 mg·L?1 6-BA or 0.2 mg·L?16-BA + 0.2 mg·L?1 Zeatin + 0.5 mg·L?1 IAA | GD + 0.1 mg·L?1 6-BA | 50 | 1/2WPM + 3 mg·L?1 IBA 培养7 d后移至 WPM + 0.4% 活性炭 1/2 WPM + 3 mg·L?1 IBA for 7 d and then moved to WPM + 0.4% activated carbon | 77.8 | |
| 栓皮栎 Q. variabilis | WPM + 0.2 mg·L?1 6-BA + 0.5 mg·L?1 PVP | WPM + 0.2 mg·L?1 6-BA + 0.5 mg·L?1 PVP | 83.3 | 1/2 WPM + 0.1 mg·L?1 NAA + 0.25 mg·L?1 IBA + 0.5 mg·L?1 PVP | 86 | |
| 麻栎 Q. acutissima | MS + 1.0 mg·L?1 6-BA | MS + 1.0 mg·L?1 6-BA + 0.02 mg·L?1 NAA | 83.3 | 1/2MS + 0.5 mg·L?1 NAA | 87 | |
| 1/4MS + 1.0 mg·L?1 6-BA + 0.2 mg·L?1 IBA + 1.0 mg·L?1 KT | 1/4MS + 2.0 mg·L?1 6-BA + 0.2 mg·L?1 IBA + 1.0 mg·L?1 GA3 | 92.0 | 1/4MS + 1.0 mg·L?1 IBA | 74.0 | ||
| MS + 1.0 mg·L?1 IBA+ 3.0 mg·L?1 6-BA | MS + 1.0 mg·L?1 6-BA + 0.02 mg·L?1 NAA | 71.2 | ||||
| 蒙古栎 Q. mongolica | MS + 0.2 mg·L?1 6-BA + 0.02 mg·L?1 NAA | 68.5 | 1/2MS + 0.05 mg·L?1 NAA | 60 | ||
| 1/2MS + 0.2 mg·L?1 6-BA | 1/2MS + 0.15 mg·L?1 6-BA + 0.15 mg·L?1 KT | 79 | MS + 0.02 mg·L?1 NAA + 0.05 mg·L?1 IBA | 62.5 | ||
| 辽东栎 Q. wutaishanica | WPM + 0.4 mg·L?1 6-BA | WPM + 0.4 mg·L?1 6-BA + 0.15 mg·L?1 KT | 65 | WPM + 1.0 mg·L?1 IBA | 65.5 | |
| MS + 0.5 mg·L?1 2,4-D + 2.0 mg·L?1 6-BA | 71.7 | 1/2MS + 0.5 mg·L?1 NAA | 78 | |||
| 槲栎 Q. aliena | WPM + 0.5 mg·L?1 ZT + 0.2 mg·L?1 6-BA | WPM + 0.1 mg·L?1 6-BA + 0.8 mg·L?1 ZT | 85.19 | 60 mg·L?1 IBA浸泡60 h后转移至无激素培养基 After soaking in 60 mg·L?1 IBA for 60 h, the medium was transferred to hormone-free medium | 70.37 | |
| 锐齿槲栎 Q. aliena var. acutiserrata | 1/2 WPM + 2.0 mg·L?1 6-BA | 1/2 WPM + 0.5 mg·L?1 6-BA + 0.05 mg·L?1 IBA | 54.8 | WPM + 1.0 mg·L?1 IBA + 5.0 g·L?1 活性炭(Activated carbon) | 41.5 |
| 陈素传, 于一苏, 蔡新玲, 等. 麻栎嫁接育苗技术的初步研究. 林业科技开发, 2009, 23 (5): 90- 92. | |
| Chen S C, Yu Y S, Cai X L, et al. A preliminary study on breeding technique for Quercus acutissima by grafting. China Forestry Science and Technology, 2009, 23 (5): 90- 92. | |
| 成向荣, 虞木奎, 葛 乐, 等. 不同间伐强度下麻栎人工林碳密度及其空间分布. 应用生态学报, 2012, 23 (5): 1175- 1180. | |
| Cheng X R, Yu M K, Ge L, et al. Carbon density and its spatial distribution in Quercus acutissima plantations under different thinning intensities. Chinese Journal of Applied Ecology, 2012, 23 (5): 1175- 1180. | |
| 丁 彤. 2013. 北美红栎无性繁殖体系的研究. 合肥: 安徽农业大学. | |
| Ding T. 2013. Research on the asexual reproduction system of north American red oak. Hefei: Anhui Agricultural University. [in Chinese] | |
| 傅家瑞, 宋松泉. 2004. 顽拗性种子生物学. 北京: 中国科学文化出版社. | |
| Fu J R, Song S Q. 2004. Stubborn seed biology. Beijing: China Science and Culture Press. [in Chinese] | |
| 郝群章, 张 勇, 张 娜. 山区栎木资源的保护与开发利用. 特种经济动植物, 2010, 13 (9): 31- 32. | |
| Hao Q Z, Zhang Y, Zhang N. Protection and development utilization of oak resources in mountainous areas. Special Economic Animal and Plants, 2010, 13 (9): 31- 32. | |
| 何 慎, 李 恂, 周洪舟, 等. 麻栎嫁接育苗试验. 湖南林业科技, 2016, 43 (4): 25- 27. | |
| He S, Li X, Zhou H Z, et al. The grafting seedling experiment of Quercus acutissima. Hunan Forestry Science & Technology, 2016, 43 (4): 25- 27. | |
| 侯元兆, 陈幸良, 孙国吉. 2017. 栎类经营. 北京: 中国林业出版社. | |
| Hou Y Z, Chen X L, Sun G J. 2017. Oak management. Beijing: China Forestry Publishing House. [in Chinese] | |
| 胡雪凡. 2022. 蒙古栎次生林抚育间伐效果及生长模型研究. 北京: 中国林业科学研究院. | |
| Hu X F. 2022. Study on the effect of thinning and cultivation of Mongolian oak secondary forest and its growth model. Beijing: Chinese Academy of Forestry. [in Chinese] | |
| 胡雪凡, 张会儒, 张晓红. 中国代表性森林经营技术模式对比研究. 森林工程, 2019, 35 (4): 32- 38. | |
| Hu X F, Zhang H R, Zhang X H. Contrastive research on practice and application of forest management technology mode in China. Forest Engineering, 2019, 35 (4): 32- 38. | |
| 黄 晔. 麻栎林粮间作模式探讨. 安徽林业科技, 2004, (1): 24- 25. | |
| Huang Y. Exploration of the grain-oak interplanting model in Quercus acutissima forests. Anhui Forestry Science and Technology, 2004, (1): 24- 25. | |
| 黄跃宁. 2022. 秦岭地区锐齿栎和栓皮栎径向生长的环境响应分析. 北京: 中国林业科学研究院. | |
| Huang Y N. 2022. Environmental response analysis of radial growth in Quercus aliena and Quercus variabilis in the Qinling region. Beijing: Chinese Academy of Forestry. [in Chinese] | |
| 惠刚盈, 胡艳波, 赵中华. 再论“结构化森林经营”. 世界林业研究, 2009, 22 (1): 14- 19. | |
| Hui G Y, Hu Y B, Zhao Z H. Further discussion on “structure-based forest management”. World Forestry Research, 2009, 22 (1): 14- 19. | |
| 贾汉森, 张劲松. 竞争压力下栓皮栎受气候影响的生长特征及其干旱适应性. 东北林业大学学报, 2024, 52 (8): 48- 54. | |
| Jia H S, Zhang J S. Growth characteristics and drought adaptability of Quercus variabilis under competitive pressure and climate influence. Journal of Northeast Forestry University, 2024, 52 (8): 48- 54. | |
| 金 刚, 尤文忠, 赵 刚, 等. 封育柞蚕场蒙古栎林不同恢复阶段种群结构与群落多样性研究. 辽宁林业科技, 2010, (2): 6- 10, 17. | |
| Jin G, You W Z, Zhao G, et al. The population structure and species diversities of different restoration stages in Quercus mongolica stands of closed tussah fields. Liaoning Forestry Science and Technology, 2010, (2): 6- 10, 17. | |
| 寇 锦, 张桂芹, 孟凡利. 优良硬阔树种蒙古栎苗木繁育技术. 林业勘查设计, 2009, (2): 76- 77. | |
| Kou J, Zhang G Q, Meng F L. The breeding technology of good hardwood species Mongolian Oak. Forest Investigation Design, 2009, (2): 76- 77. | |
| 李国雷, 祝 燕, 蒋 乐, 等. 指数施肥对栓皮栎容器苗生长和氮积累的影响. 东北林业大学学报, 2012, 40 (11): 6- 9. | |
| Li G L, Zhu Y, Jiang L, et al. Effect of exponential fertilization on growth and nitrogen storage of containerized Quercus variabilis Seedlings. Journal of Northeast Forestry University, 2012, 40 (11): 6- 9. | |
| 李奎全, 王 君, 许延国, 等. 蒙古栎嫁接技术. 吉林林业科技, 2019, 48 (2): 7- 10. | |
| Li K Q, Wang J, Xu Y G, et al. Grafting technology of Quercus mongolica. Journal of Jilin Forestry Science and Technology, 2019, 48 (2): 7- 10. | |
| 李美莹, 李 前, 金子涵, 等. 蒙古栎体细胞胚胎发生技术研究. 辽宁林业科技, 2021, (1): 1- 6. | |
| Li M Y, Li Q, Jin Z H, et al. Study on somatic embryogenesis of Quercus mongolica. Liaoning Forestry Science and Technology, 2021, (1): 1- 6. | |
| 李文文. 2010. 蒙古栎(Quercus mongolica Fisch. )种源变异及无性繁殖研究. 北京: 中国林业科学研究院. | |
| Li W W. 2010. Research on the source variation and asexual reproduction of Quercus mongolica Fisch. Beijing: Chinese Academy of Forestry. [in Chinese] | |
| 李 恂, 何 慎, 周洪舟, 等. 北美橡树嫁接育苗试验. 湖南林业科技, 2019, 46 (4): 32- 35. | |
| Li X, He S, Zhou H Z, et al. Experiment on grafting and seedling of north American oak. Hunan Forestry Science & Technology, 2019, 46 (4): 32- 35. | |
| 廖 婧, 方炎明, 虞木奎. 麻栎成熟合子胚外植体体胚发生和植株再生. 西北植物学报, 2012, 32 (2): 398- 402. | |
| Liao J, Fang Y M, Yu M K. Somatic embryogenesis and plant regeneration from mature embryo explants in Quercus acutissima. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32 (2): 398- 402. | |
| 刘彩云. 2008. 栓皮栎种群结构与动态规律研究. 南京: 南京林业大学. | |
| Liu C Y. 2008. Research on the population structure and dynamic patterns of Quercus variabilis. Nanjing: Nanjing Forestry University. [in Chinese] | |
| 刘红梅, 王 娜, 吕世杰, 等. 不同试验处理对蒙古栎嫁接育苗的影响. 内蒙古林业科技, 2013, 39 (3): 37- 39. | |
| Liu H M, Wang N, Lv S J, et al. Effects of different treatments on grafting breeding of Quercus mongolica. Journal of Inner Mongolia Forestry Science and Technology, 2013, 39 (3): 37- 39. | |
| 刘佳嘉, 李国雷, 刘 勇, 等. 容器类型和胚根短截对栓皮栎容器苗苗木质量及造林初期效果的影响. 林业科学, 2017, 53 (6): 47- 55. | |
| Liu J J, Li G L, Liu Y, et al. Combined effects of container type and radicle pruning on seedling quality and early field performance of Quercus variabilis container seedlings. Scientia Silvae Sinicae, 2017, 53 (6): 47- 55. | |
| 刘文桢, 赵中华, 胡艳波, 等. 2015. 小陇山栎类混交林经营. 北京: 中国林业出版社. | |
| Liu W Z, Zhao Z H, Hu Y B, et al. 2015. Quercus mixed forest management of Xiaolongshan. Beijing: China Forestry Publishing House. [in Chinese] | |
| 刘禹含. 2024. 北美红栎无性繁殖技术研究. 沈阳: 沈阳农业大学. | |
| Liu Y H. 2024. Research on asexual propagation technology of north American red oak. Shenyang: Shenyang Agricultural University. [in Chinese] | |
| 陆秀君, 李宏祎, 艾万峰, 等. 容器规格、基质配比和缓释肥对蒙古栎容器苗质量的影响. 东北林业大学学报, 2020, 48 (7): 17- 22. | |
| Lu X J, Li H W, Ai W F, et al. Effects of container size, matrix ratio and slow/controlled release fertilizer on container seedling of Quercus mongolica. Journal of Northeast Forestry University, 2020, 48 (7): 17- 22. | |
| 罗 艳, 周浙昆. 2001. 栎属青冈亚属(壳斗科)的叶表皮研究. 植物分类学报, (6): 489–501, 585–587. | |
| Luo Y, Zhou Z K. 2001. Leaf epidermis of Quercus subgen. cyclobalanopsis (Oerst. ) Schneid. (Fagaceae). Acta Phytotaxonomica Sinica, 489–501, 585–587. [in Chinese] | |
| 吕秀立. 2019. 栎属、考来木属等优良材料筛选和无性繁殖技术研究. 南京: 南京林业大学. | |
| Lv X L. 2019. Screening of excellent materials such as Quercus and Corresa and research on asexual reproduction techniques. Nanjing: Nanjing Forestry University. [in Chinese] | |
| 毛沂新, 张慧东, 王睿照, 等. 辽东山区蒙古栎径向生长对林分密度和气候因子的响应. 应用生态学报, 2021, 32 (10): 3477- 3486. | |
| Mao Y X, Zhang H D, Wang R Z, et al. Responses of radial growth of Quercus mongolica to stand density and climatic factors in a mountainous area of eastern Liaoning Province, China. Chinese Journal of Applied Ecology, 2021, 32 (10): 3477- 3486. | |
| 普春霞, 周浙昆, 罗 艳. 中国栎属(壳斗科)基于叶表皮及叶结构特征的分支分析. 云南植物研究, 2002, (6): 689- 698. | |
| Pu C X, Zhou Z K, Luo Y. A cladistic analysis of Quercus (Fagaceae)in China based on leaf epidermis and architecture. Acta Botanica Yunnanica, 2002, (6): 689- 698. | |
| 祁承经, 曹基武. 值得重视的北美栎树. 林业与生态, 2015, (12): 36- 39. | |
| Qi C J, Cao J W. North American oak trees that deserve attention. Forestry and Ecology, 2015, (12): 36- 39. | |
| 邵妍丽. 2012. 栓皮栎离体培养成熟效应及生化特性的研究. 杨凌: 西北农林科技大学. | |
| Shao Y L. 2012. Study on the maturation effect and biochemical characteristics of Quercus variabilis in vitro culture. Yangling: Northwest A&F University. [in Chinese] | |
| 孙海菁, 施 翔, 陈益泰, 等. 弗吉尼亚栎不定芽增殖及试管苗再生影响因子研究. 林业科学研究, 2020, 33 (2): 103- 111. | |
| Sun H J, Shi X, Chen Y T, et al. Study on the factors affecting adventitious shoots proliferation and in vitro regeneration of Quercus virginiana. Forest Research, 2020, 33 (2): 103- 111. | |
| 王 奇, 孙婧依, 刘建锋, 等. 暖温带北缘3种栎树径向生长对气候要素的响应差异及预测. 林业科学研究, 2023, 36 (3): 62- 70. | |
| Wang Q, Sun J Y, Liu J F, et al. Differences in the response of radial growth of three Quercus species to climatic elements at the northern edge of the warm temperate zone and prediction. Forest Research, 2023, 36 (3): 62- 70. | |
| 王诗慧. 2024. 辽东栎组培体系优化及组培苗与实生苗的比较转录组分析. 沈阳: 沈阳农业大学. | |
| Wang S H. 2024. Optimization of Quercus liaotungensis tissue culture system and comparative transcriptome analysis of tissue culture seedlings and seedlings. Shenyang: Shenyang Agricultural University. [in Chinese] | |
| 王雪玉, 任海青, 王玉荣, 等. 国产麻栎和栓皮栎木材的主要力学性能. 木材工业, 2020, 34 (2): 38- 41. | |
| Wang X Y, Ren H Q, Wang Y R, et al. Mechanical properties of native sawtooth oak and oriental oak wood. China Wood Industry, 2020, 34 (2): 38- 41. | |
| 王雪玉, 王玉荣, 龚迎春, 等. 国产栎木木材性质及加工技术研究现状. 木材工业, 2019, 33 (5): 30- 33. | |
| Wang X Y, Wang Y R, Gong Y C, et al. Review of properties and processing technology of native oak timber in China. China Wood Industry, 2019, 33 (5): 30- 33. | |
| 卫 梅. 2016. 闽西青冈组织培养体系的建立及其机理研究. 福州: 福建农林大学. | |
| Wei M. 2016. Establishment and mechanism study of tissue culture system for Quercus glauca in western Fujian. Fuzhou: Fujian Agriculture and Forestry University. [in Chinese] | |
| 魏 爽, 崔建国, 温 伟, 等. 辽东栎的组织培养和植株再生. 植物生理学通讯, 2010, 46 (12): 1277- 1278. | |
| Wei S, Cui J G, Wen W, et al. Tissue culture and plantlet regeneration of Quercus liaotungensis Koidz. Plant Physiology Journal, 2010, 46 (12): 1277- 1278. | |
| 邢学丁, 任俊杰, 张婉莹, 等. 蒙古栎和栓皮栎不同砧穗组合嫁接苗生长特性研究. 现代农业科技, 2023, (15): 108- 110. | |
| Xing X D, Ren J J, Zhang W Y, et al. Research on growth characteristics of grafting seedlings with different rootstock-scion combinations of Quercus mongolica and Quercus variabilis. Modern Agricultural Science and Technology, 2023, (15): 108- 110. | |
| 熊仕发, 吴立文, 陈益存, 等. 不同种源白栎果实形态特征和营养成分含量变异分析. 林业科学研究, 2020, 33 (2): 93- 102. | |
| Xiong S F, Wu L W, Chen Y C, et al. Variation in morphological characters and nutrient contents of Quercus fabri fruits from different provenances. Forest Research, 2020, 33 (2): 93- 102. | |
| 杨锋利. 2006. 成龄栓皮栎组培繁殖技术的研究. 杨凌: 西北农林科技大学. | |
| Yang F L. 2006. Study on the tissue culture propagation technology of mature cork oak. Yangling: Northwest A&F University. [in Chinese] | |
| 杨庆春. 2020. 栓皮栎嫩枝扦插关键技术及生根机理研究. 北京: 北京林业大学. | |
| Yang Q C. 2020. Research on key techniques and rooting mechanism of soft branch cutting of Quercus variabilis. Beijing: Beijing Forestry University. [in Chinese] | |
| 杨雯雯. 2021. 豫西伏牛山区栓皮栎次生林林分结构与经营措施研究. 北京: 北京林业大学. | |
| Yang W W. 2021. Study on the stand structure and management measures of Quercus variabilis secondary forest in Funiu mountain area, western Henan Province. Beijing: Beijing Forestry University. [in Chinese] | |
| 姚光刚, 李国雷, 郑永林, 等. 缓释肥施用量对槲栎容器苗苗木质量的影响. 南京林业大学学报(自然科学版), 2019, 43 (1): 69- 75. | |
| Yao G G, Li G L, Zheng Y L, et al. Effects of slow-release fertilizer rate on the quality of Quercus aliena container seedlings. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43 (1): 69- 75. | |
| 余碧云, 张文辉. 间伐强度对阴、阳坡栓皮栎林木生长及干形的影响. 西北农林科技大学学报(自然科学版), 2016, 44 (1): 73- 80. | |
| Yu B Y, Zhang W H. Effect of thinning intensity on growth and stem-form of Quercus variabilis in shady and sunny slopes. Journal of Northwest A& F University (Natural Science Edition), 2016, 44 (1): 73- 80. | |
| 于 艳, 郎庆龙, 夏兴宏, 等. 以多年生麻栎茎段为外植体的组织培养条件优化. 蚕业科学, 2014, 40 (2): 202- 209. | |
| Yu Y, Lang Q L, Xia X H, et al. Optimization of tissue culture condition using perennial Quercus acutissima stem segments as explant. Acta Sericologica Sinica, 2014, 40 (2): 202- 209. | |
| 曾思齐, 朱光玉, 吕 勇, 等. 2020. 湖南栎类次生林经营. 北京: 中国林业出版社. | |
| Zeng S Q, Zhu G Y, Lü Y, et al. 2020. Management of secondary oak forests in Hunan Province. Beijing: China Forestry Publishing House. [in Chinese] | |
| 张存旭, 姚增玉, 赵 忠. 栓皮栎体胚诱导关键影响因素研究. 林业科学, 2005, 41 (2): 174- 177, 218. | |
| Zhang C X, Yao Z Y, Zhao Z. Factors influencing the induction of somatic embryogenesis in Quercus variabilis. Scientia Silvae Sinicae, 2005, 41 (2): 174- 177, 218. | |
| 张慧东, 毛沂新, 王睿照, 等. 辽东山区次生蒙古栎成熟林空间结构及个体竞争特征. 应用生态学报, 2024, 35 (9): 2492- 2500. | |
| Zhang H D, Mao Y X, Wang R Z, et al. Spatial structure and individual competition characteristics of secondary Mongolian oak mature forests in the mountainous area of eastern Liaoning Province, China. Chinese Journal of Applied Ecology, 2024, 35 (9): 2492- 2500. | |
| 张金香, 王海霞, 杨鸿飞. 栎树利用价值及资源培育. 河北林业科技, 2014, (3): 76- 77. | |
| Zhang J X, Wang H X, Yang H F. The utilization value and resource cultivation of oak trees. Journal of Hebei Forestry Science and Technology, 2014, (3): 76- 77. | |
| 张 瑜. 2014. 秦岭地区栓皮栎天然次生林地位指数表的编制与生长模拟. 北京: 北京林业大学. | |
| Zhang Y. 2014. Compilation and growth simulation of status index table for natural secondary forests of Quercus variabilis in Qinling Mountains. Beijing: Beijing Forestry University. [in Chinese] | |
| 赵 丹, 诸葛强, 唐罗忠. 麻栎的组织培养与快速繁殖. 中国农学通报, 2010, 26 (15): 168- 171. | |
| Zhao D, Zhu G Q, Tang L Z. Tissue culture and rapid propagation of Quercus acutissima. Chinese Agricultural Science Bulletin, 2010, 26 (15): 168- 171. | |
| 赵吉胜, 杨 晶. 蒙古栎组织培养的初步研究. 吉林林业科技, 2014, 43 (1): 17- 19. | |
| Zhao J S, Yang J. Study on tissue culture of Quercus mongolica. Journal of Jilin Forestry Science and Technology, 2014, 43 (1): 17- 19. | |
| 赵志强, 汪建根. 微波辅助麻栎壳斗单宁浸提的研究. 皮革化工, 2005, 22 (1): 35- 38. | |
| Zhao Z Q, Wang J G. Study on microwave-assisted extraction of sawtooth oak cupule tannin. Leather Chemicals, 2005, 22 (1): 35- 38. | |
| 郑聪慧, 贾黎明, 段 劼, 等. 华北地区栓皮栎天然次生林地位指数表的编制. 林业科学, 2013, 49 (2): 79- 85. | |
| Zheng C H, Jia L M, Duan J, et al. Establishment of site index table for Quercus variabilis natural secondary forest in north China. Scientia Silvae Sinicae, 2013, 49 (2): 79- 85. | |
| 郑 颖, 于世河, 冯 健, 等. 2020. 不同处理对蒙古栎嫁接成活率和苗木生长的影响. 林业科技通讯, (5): 52–54. | |
| Zheng Y, Yu S H, Feng J, et al. Effects of different treatment methods on survival rate and seedling growth of Quercus mongolica. Forest Science and Technology, (5): 52–54. [in Chinese] | |
| 周慧荣. 2023. 槲栎和栓皮栎组织培养体系建立的初步研究. 北京: 北京林业大学. | |
| Zhou H R. 2023. Preliminary study on the establishment of tissue culture system for Quercus aliena and Quercus variabilis. Beijing: Beijing Forestry University. [in Chinese] | |
| 周苗苗, 原阳晨, 庞久帅, 等. 2020. 栎属植物嫁接繁育技术. 河北林业科技, (4): 32–34. | |
| Zhou M M, Yuan Y C, Pang J S, et al. Grafting propagation technology of Quercus. Journal of Hebei Forestry Science and Technology, (4): 32–34. [in Chinese] | |
| 祝 维, 张 西, 贾黎明. 伏牛山地区栓皮栎天然次生林地位指数表的编制. 东北林业大学学报, 2017, 45 (12): 32- 37. | |
| Zhu W, Zhang X, Jia L M. Establishment of site index table for Quercus variabilis natural secondary forest in Funiushan mountainous area. Journal of Northeast Forestry University, 2017, 45 (12): 32- 37. | |
|
Ai W F, Liu Y Q, Mei M, et al. A chromosome-scale genome assembly of the Mongolian oak (Quercus mongolica). Molecular Ecology Resources, 2022, 22 (6): 2396- 2410.
doi: 10.1111/1755-0998.13616 |
|
| Baskin C C, Baskin J M. 2014. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego: Academic Press. | |
| Bewley J D, Bradford K J, Hilhorst H W M, et al. 2013. Seeds: physiology of development, germination and dormancy. New York: Springer. | |
| Burns R M, Honkala B H. 1990. Silvics of north America Vol. 2: hardwoods. Agriculture Handbook vol. 654. USDA Forest Service, Washington DC, 877. | |
| Chalupa V. Plant regeneration by somatic embryogenesis from cultured immature embryos of oak (Querem robur L.) and linden (Tilia cordata Mill.). Plant Cell Reports, 1990, 9 (7): 398- 401. | |
|
Chang M X, Yang N, Yang X, et al. Optimizing proliferation and synchronization for somatic embryogenesis in Quercus aliena. Plant Cell Tissue and Organ Culture, 2025, 161 (1): 10.
doi: 10.1007/s11240-025-03030-5 |
|
|
Chen Y X, Liu P Y, Wang Y C, et al. Characteristic of epicotyl dormancy and its hormonal regulation in Chinese cork oak (Quercus variabilis). Plant Physiology and Biochemistry, 2024, 215, 109041.
doi: 10.1016/j.plaphy.2024.109041 |
|
|
Crowl A A, Manos P S, McVay J D, et al. Uncovering the genomic signature of ancient introgression between white oak lineages (Quercus). New Phytologist, 2020, 226 (4): 1158- 1170.
doi: 10.1111/nph.15842 |
|
|
Du F K, Qi M, Zhang Y Y, et al. Asymmetric character displacement in mixed oak stands. New Phytologist, 2022, 236 (3): 1212- 1224.
doi: 10.1111/nph.18311 |
|
|
Fu R R, Zhu Y, Liu Y X, et al. Genome-wide analyses of introgression between two sympatric Asian oak species. Nature Ecology and Evolution, 2022, 6 (7): 924- 935.
doi: 10.1038/s41559-022-01754-7 |
|
|
Hipp A L, Manos P S, Hahn M, et al. Genomic landscape of the global oak phylogeny. New Phytologist, 2020, 226 (4): 1198- 1212.
doi: 10.1111/nph.16162 |
|
|
Huo C R, Villar-Salvador P, Li Y N, et al. Physiological recovery after drought increases with leaf and taproot drought tolerance among oak seedlings. Environmental and Experimental Botany, 2024, 222, 105747.
doi: 10.1016/j.envexpbot.2024.105747 |
|
| Johnson P S, Shifley S R, Rogers R, et al. 2019. The Ecology and Silviculture of Oaks. 3rd Edition. New York: CAB International. | |
|
Kremer A, Hipp A L. Oaks: an evolutionary success story. New Phytologist, 2020, 226 (4): 987- 1011.
doi: 10.1111/nph.16274 |
|
| Kremer A, Xu L, Ducousso A. 2004. Tree breeding, practices: genetics of oaks//Tree breeding, practices. Amsterdam: Elsevier, 1501–1507. | |
|
Li Q S, Gu M M, Deng M. In vitro propagation of oriental white oak Quercus aliena Blume. Forests, 2019, 10 (6): 463.
doi: 10.3390/f10060463 |
|
|
Li Y, Wang L, Zhang X W, et al. Strong phylogeographic structure in major plastid lineages of East Asian Cerris oaks (Quercus subsection Campylolepides, Fagaceae): insights from a 761-plastome analysis. Industrial Crops and Products, 2025, 226, 120731.
doi: 10.1016/j.indcrop.2025.120731 |
|
|
Liang Y Y, Liu H, Lin Q Q, et al. Pan-genome analysis reveals local adaptation to climate driven by introgression in oak species. Molecular Biology and Evolution, 2025, 42 (5): 88.
doi: 10.1093/molbev/msaf088 |
|
|
Liu J J, Bloomberg M, Li G L, et al. Effects of copper root pruning and radicle pruning on first-season field growth and nutrient status of Chinese cork oak seedlings. New Forests, 2016, 47 (5): 715- 729.
doi: 10.1007/s11056-016-9540-x |
|
|
Liu S Y, Yang Y Y, Tian Q, et al. An integrative framework reveals widespread gene flow during the early radiation of oaks and relatives in Quercoideae (Fagaceae). Journal of Integrative Plant Biology, 2025, 67 (4): 1119- 1141.
doi: 10.1111/jipb.13773 |
|
|
Martínez M T, San José M C, Vieitez A M, et al. Propagation of mature Quercus ilex L. (holm oak) trees by somatic embryogenesis. Plant Cell Tissue and Organ Culture, 2017, 131 (2): 321- 333.
doi: 10.1007/s11240-017-1286-4 |
|
|
Mirov N T, Cumming W C. Propagation of cork oak by grafting. Journal of Forestry, 1945, 43 (8): 589- 591.
doi: 10.1093/jof/43.8.589 |
|
| Nicolescu V N, Carvalho J, Hochbichler E, et al. 2017. Silvicultural guidelines for European coppice forests. Silviculture, 7: 46–63. | |
|
Plomion C, Aury J M, Amselem J, et al. Oak genome reveals facets of long lifespan. Nature Plants, 2018, 4 (7): 440- 452.
doi: 10.1038/s41477-018-0172-3 |
|
|
Qi M, Wang J, Wang R L, et al. Intraspecific character displacement in oaks. The Plant Journal, 2025, 122 (2): e70165.
doi: 10.1111/tpj.70165 |
|
| San José M C, Martínez M T, Cernadas M J, et al. 2017. Biotechnological efforts for the propagation of Quercus lusitanica Lam. , an endangered species. Trees, 31(5): 1571–1581. | |
|
Sanchez M C, San José M C, Ballester A, et al. Requirements for in vitro rooting of Quercus robur and Q. rubra shoots derived from mature trees. Tree Physiology, 1996, 16 (8): 673- 680.
doi: 10.1093/treephys/16.8.673 |
|
|
Sax M S, Bassuk N, Bridgen M. Tissue culture clonal propagation of hybrid white oaks for the urban environment. HortScience, 2019, 54 (12): 2214- 2223.
doi: 10.21273/HORTSCI14320-19 |
|
|
Spiecker H. Silvicultural management in maintaining biodiversity and resistance of forests in Europe-temperate zone. Journal of Environmental Management, 2003, 67 (1): 55- 65.
doi: 10.1016/S0301-4797(02)00188-3 |
|
| Tiefenbacher H. 2000. Zielstärkennutzung bei Bucheeine Alternative? Forst und Holz, 55(21): 672–678. | |
| Vengadesan G, Pijut P M. In vitro propagation of northern red oak (Quercus rubra L.). In Vitro Cellular & Developmental Biology-Plant, 2009, 45 (4): 474- 482. | |
|
Wang T, Li H, Zhao J J, et al. Exploration of suitable conditions for shoot proliferation and rooting of Quercus robur L. in plant tissue culture technology. Life, 2025, 15 (3): 348.
doi: 10.3390/life15030348 |
|
|
Wang W B, He X F, Yan X M, et al. Chromosome-scale genome assembly and insights into the metabolome and gene regulation of leaf color transition in an important oak species, Quercus dentata. New Phytologist, 2023, 238 (5): 2016- 2032.
doi: 10.1111/nph.18814 |
|
|
Wu L W, Cai Y Q, Jiang C G, et al. Uncovering the genetic basis for enhanced mushroom flavor in Quercus fabri through genome sequencing and metabolic profiling. Horticulture Research, 2025, 12 (9): 156.
doi: 10.1093/hr/uhaf156 |
|
|
Xia K, Daws M I, Peng L L. Climate drives patterns of seed traits in Quercus species across China. New Phytologist, 2022, 234 (5): 1629- 1638.
doi: 10.1111/nph.18103 |
|
|
Yang Q S, Li J J, Wang Y, et al. Genomic basis of the distinct biosynthesis of β-glucogallin, a biochemical marker for hydrolyzable tannin production, in three oak species. New Phytologist, 2024b, 242 (6): 2702- 2718.
doi: 10.1111/nph.19711 |
|
|
Yang Q S, Zhang R M, Cao Y B, et al. Comprehensive evaluation of salt tolerance in six oak species (Quercus spp.): unraveling growth-resistance trade-offs. Scientia Horticulturae, 2024a, 338, 113835.
doi: 10.1016/j.scienta.2024.113835 |
|
|
Yang X, Chang M X, Yang N, et al. ABA exerts a promotive effect on the early process of somatic embryogenesis in Quercus aliena Bl. Plant Physiology and Biochemistry, 2024c, 214, 108969.
doi: 10.1016/j.plaphy.2024.108969 |
|
| Yu X R, Zhang W, Zhu H Y, et al. Tissue culture and rapid micropropagation for Quercus suber L. Forests, 2025, 16 (1): 23. |
| [1] | 郝嘉珩,郭毅超,李浩,朱爱青,石雷. 基于时序遥感指数的中国竹林植被信息提取[J]. 林业科学, 2025, 61(9): 1-11. |
| [2] | 蒋俊峰,王莉,张骄伽,李淑文,邢军,付怀军,姚艳霞. 寄生枫杨潜叶蜂的曲纹姬小蜂属一新种(膜翅目:姬小蜂科)[J]. 林业科学, 2025, 61(9): 155-161. |
| [3] | 王军辉,丁昌俊,李伟,罗克明,王君,张伟溪,钮世辉,张苗苗,赵曦阳,薛良交,殷恒福. 2024年中国林木遗传育种研究进展[J]. 林业科学, 2025, 61(7): 35-51. |
| [4] | 唐雪飞,蒲婷婷,李豫杰,范嘉铭,周梦瑶,范国强. 泡桐研究进展与展望[J]. 林业科学, 2025, 61(7): 114-128. |
| [5] | 段文斌,徐向龙,高洁,刘义,叶元兴,丁长青. 笼养条件下不同性别朱鹮个体繁育成效的年龄差异[J]. 林业科学, 2025, 61(6): 139-146. |
| [6] | 康向阳. 我国林木育种与良种应用需重视的问题再思考[J]. 林业科学, 2025, 61(6): 224-231. |
| [7] | 王亚飞,刘洋,王凯,丁晓菲,续可心,贾黎明,席本野. 水氮耦合处理对毛白杨纸浆林生长及土壤水养特征影响[J]. 林业科学, 2025, 61(5): 85-97. |
| [8] | 陈广胜,温林郅,张文均,李超,于鸣,景维鹏. 基于特征融合的复杂场景树种跨域泛化分类模型[J]. 林业科学, 2025, 61(4): 33-45. |
| [9] | 葛晓宁,许新桥,张怀清,张京,杨杰,崔泽宇,傅汝饶,梁金洁,邹添华,王林龙,刘洋. 林木基因型-环境互作算法研究进展与思考[J]. 林业科学, 2025, 61(3): 1-15. |
| [10] | 孙永明,王彬力. 山西不同起源油松林可燃物载量及其影响因子[J]. 林业科学, 2025, 61(3): 27-37. |
| [11] | 谢珊珊,张军国,谢将剑,张长春. 基于系统分类学信息的鸟类音频零样本分类[J]. 林业科学, 2025, 61(2): 12-20. |
| [12] | 王天欣,牛晋鸿,曹明嵘,刘成功,李金花. 低氮下小黑杨×欧洲黑杨杂交子代苗期性状遗传变异和选择[J]. 林业科学, 2025, 61(2): 142-151. |
| [13] | 张磊,周星鲁,王丽娟,胡建军. 杨树抗虫分子育种与转基因生物安全评价研究进展[J]. 林业科学, 2025, 61(2): 190-203. |
| [14] | 张聪,刘琪,李海奎,刘鹏举,詹思颖. 我国尺度兼容和树种分类的材积源森林碳储量模型[J]. 林业科学, 2025, 61(1): 57-69. |
| [15] | 朱永莉,张杰. 上海市栽培乐昌含笑开花及传粉生物学[J]. 林业科学, 2024, 60(6): 86-93. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||