|
褚荣浩, 李 萌, 谢鹏飞, 等. 安徽省近20年地表蒸散和干旱变化特征及其影响因素分析. 生态环境学报, 2021, 30 (6): 1229- 1239.
|
|
Chu R H, Li M, Xie P F, et al. Characteristics and influencing factors of surface evapotranspiration and drought in Anhui Province during recent 20 years. Ecology and Environmental Sciences, 2021, 30 (6): 1229- 1239.
|
|
邓海军, 何雯君, 刘 群, 等. 青藏高原陆地水储量对植被变化的响应特征分析. 地理科学, 2023, 43 (06): 952- 960.
|
|
Deng H J, He W J, Liu Q, et al. Response of terrestrial water storage to vegetation change on the Qinghai-Tibet Plateau. Scientia Geographica Sinica, 2023, 43 (06): 952- 960.
|
|
邓兴耀, 刘 洋, 刘志辉, 等. 中国西北干旱区蒸散发时空动态特征. 生态学报, 2017, 37 (9): 2994- 3008.
|
|
Deng X Y, Liu Y, Liu Z H, et al. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of northwest China. Acta Ecologica Sinica, 2017, 37 (9): 2994- 3008.
|
|
底阳平, 张扬建, 曾 辉, 等. “亚洲水塔”变化对青藏高原生态系统的影响. 中国科学院院刊, 2019, 34 (11): 1322- 1331.
|
|
Di Y P, Zhang Y J, Zeng H, et al. Effects of changed Asian Water Tower on Tibetan Plateau ecosystem: a review. Bulletin of Chinese Academy of Sciences, 2019, 34 (11): 1322- 1331.
|
|
方精云, 朴世龙, 贺金生, 等. 近20年来中国植被活动在增强. 中国科学 (C辑), 2003, 33 (6): 554- 565.
|
|
Fang J Y, Piao S L, He J S, et al. Vegetation activity in China has been increasing in the past 20 years. Science in China (Series C), 2003, 33 (6): 554- 565.
|
|
冯 飞, 姚云军, 张彦彬, 等. 基于MOD16产品的三江平原蒸散量时空分布特征分析. 生态环境学报, 2015, 24 (11): 1858- 1864.
|
|
Feng F, Yao Y J, Zhang Y B, et al. Spatio-temporal variations of evapotranspiration in Sanjiang Plain using MOD16 products. Ecology and Environmental Sciences, 2015, 24 (11): 1858- 1864.
|
|
高瑜莲, 柳锦宝, 柳维扬, 等. 近14a新疆南疆绿洲地区地表蒸散与干旱的时空变化特征研究. 干旱区地理, 2019, 42 (04): 830- 837.
|
|
Gao Y L, Liu J B, Liu W Y, et al. Spatio-temporal variation characteristics of surface evapotranspiration and drought at the oasis area of the southern Xinjiang in recent 14 years. Arid Land Geography, 2019, 42 (04): 830- 837.
|
|
李 放, 沈彦俊. 地表遥感蒸散发模型研究进展. 资源科学, 2014, 36 (7): 1478- 1488.
|
|
Li F, Shen Y J. Progress in remote sensing-based models for surface heat and water fluxes. Resources Science, 2014, 36 (7): 1478- 1488.
|
|
黎永红, 薛 晨. 紫坪铺水库入库径流年际变化特征分析. 四川水力发电, 2017, 36 (S2): 113- 115, 132.
doi: 10.3969/j.issn.1001-2184.2017.z2.037
|
|
Li Y H, Xue C. Analysis on interannual variation characteristics of inflow runoff of Zipingpu Reservoir. Sichuan Water Power, 2017, 36 (S2): 113- 115, 132.
doi: 10.3969/j.issn.1001-2184.2017.z2.037
|
|
刘 萌, 彭 中, 黄凌霄, 等. 基于涡动相关通量观测的农田蒸散发产品精度验证. 遥感学报, 2023, 27 (5): 1238- 1253.
doi: 10.11834/jrs.20222008
|
|
Liu M, Peng Z, Huang L X, et al. Validation of crop evapotranspiration products based on eddy-covariance flux observations. National Remote Sensing Bulletin, 2023, 27 (5): 1238- 1253.
doi: 10.11834/jrs.20222008
|
|
宁婷婷. 2017. Budyko 框架下黄土高原流域蒸散时空变化及其归因分析. 北京: 中国科学院大学, 118.
|
|
Ning T T. 2017. The spatiotemporal variability of catchment evapotranspiration and its attribution analysis in the Loess Plateau under the Budyko framework. Beijing: University of Chinese Academy of Sciences, 118. [in Chinese]
|
|
邱姝月. 基于MOD16岷江上游实际蒸散发的时空分布特征. 现代盐化工, 2021, 48 (1): 92- 93.
doi: 10.3969/j.issn.1005-880X.2021.01.041
|
|
Qiu S Y. Temporal and spatial distribution characteristics of actual evapotranspiration in the upper reaches of Minjiang River based on MOD16. Modern Salt and Chemical Industry, 2021, 48 (1): 92- 93.
doi: 10.3969/j.issn.1005-880X.2021.01.041
|
|
孙美荣, 孙鹏森. 2023. 西南高山亚高山区植被活动变化的气候驱动效应与可持续性. 水土保持研究, 30(3): 240-250.
|
|
Sun M R, Sun P S. 2023. Climate-driving effects and sustainability of vegetation activity change in alpine and subalpine areas of southwest China, 30(3): 240−250. [in Chinese]
|
|
孙鹏森, 刘 宁, 刘世荣, 等. 川西亚高山流域水碳平衡研究. 植物生态学报, 2016, 40 (10): 1037- 1048.
doi: 10.17521/cjpe.2016.0020
|
|
Sun P S, Liu N, Liu S R, et al. Trade-offs between water yield and carbon sequestration for sub-alpine catchments in western Sichuan, China. Chinese Journal of Plant Ecology, 2016, 40 (10): 1037- 1048.
doi: 10.17521/cjpe.2016.0020
|
|
王 容, 刘元波, 王若男, 等. GLEAM和MOD16蒸散发产品在青藏高原中东南湖泊流域的适用性评价. 湖泊科学, 2023, 35 (03): 1057- 1071.
|
|
Wang R, Liu Y B, Wang R N, et al. Evaluation of GLEAM and MOD16 evapotranspiration products in the central and south-eastern lake basins of the Qinghai-Tibet Plateau. Journal of Lake Scineces, 2023, 35 (03): 1057- 1071.
|
|
汪 涛, 陈亚梅, 廖咏梅, 等. 1990—2020年西藏天然林分布与景观格局的动态变化. 山地学报, 2022, 40 (5): 682- 693.
|
|
Wang T, Chen Y M, Liao Y M, et al. Dynamic changes in the distribution of natural forests in Tibet from 1990 to 2020 and related landscape pattern evolution. Mountain Research, 2022, 40 (5): 682- 693.
|
|
翁升恒, 张方敏, 卢燕宇, 等. 淮河流域蒸散发时空变化与归因分析. 生态学报, 2022, 42 (16): 6718- 6730.
|
|
Weng S H, Zhang F M, Lu Y Y, et al. Spatiotemporal changes and attribution analysis of evapotranspiration in the Huai River Basin. Acta Ecologica Sinica, 2022, 42 (16): 6718- 6730.
|
|
向珈瑶, 彭文甫, 陶 帅, 等. 2000—2019年四川省植被恢复成效与影响因素. 生态学报, 2023, 43 (4): 1596- 1609.
|
|
Xiang J Y, Peng W F, Tao S, et al. Analyzing the effect and influencing factors of vegetation restoration in Sichuan Province from 2000 to 2019. Acta Ecologica Sinica, 2023, 43 (4): 1596- 1609.
|
|
杨少康, 刘 冀, 魏 榕, 等. 长江上游流域生长季气象干旱分异特征. 水土保持研究, 2022, 29 (2): 184- 191.
doi: 10.3969/j.issn.1005-3409.2022.2.stbcyj202202028
|
|
Yang S K, Liu J, Wei R, et al. Differentiation characteristics of meteorological drought in the growing season in the upper reaches of the Yangtze River Basin. Research of Soil and Water Conservation, 2022, 29 (2): 184- 191.
doi: 10.3969/j.issn.1005-3409.2022.2.stbcyj202202028
|
|
余忠水, 陈 华, 德吉白玛, 等. 基于ERA-Interim的青藏高原近40年云量的时空分布特征. 山地学报, 2022, 40 (6): 811- 822.
doi: 10.3969/j.issn.1008-2786.2022.6.sdxb202206003
|
|
Yu Z S, Chen H, Deji B M, et al. Spat-temporal distribution of the cloud amount in the Qinghai-Tibet Plateau of China for the past 40 years based on ERA-Interim. Mountain Research, 2022, 40 (6): 811- 822.
doi: 10.3969/j.issn.1008-2786.2022.6.sdxb202206003
|
|
詹云军, 章 文, 严 岩, 等. 长江流域实际蒸散发演变趋势及影响因素. 生态学报, 2021, 41 (17): 6924- 6935.
|
|
Zhan Y J, Zhang W, Yan y, et al. Analysis of actual evapotranspiration evolution and influencing factors in the Yangtze River Basin. Acta Ecologica Sinica, 2021, 41 (17): 6924- 6935.
|
|
赵 燊, 陈少辉. 基于台站和MOD16数据的山东省蒸散及潜在蒸散时空变化. 地理科学进展, 2017, 36 (8): 1040- 1047.
doi: 10.18306/dlkxjz.2017.08.013
|
|
Zhao S, Chen S H. Spatiotemporal variations of evapotranspiration and potential evapotranspiration in Shandong province based on station observations and MOD16. Progress in Geography, 2017, 36 (8): 1040- 1047.
doi: 10.18306/dlkxjz.2017.08.013
|
|
赵卓怡, 郝兴明. 基于Priestley-Taylor方法的中亚干旱区实际蒸散特征及归因. 干旱区研究, 2023, 40 (07): 1085- 1093.
|
|
Zhao Z Y, Hao X M. Actual evapotranspiration characteristics and attribution in arid Centra Asia based on the Priestley-Taylor method. Arid Zone Research, 2023, 40 (07): 1085- 1093.
|
|
Chen C, Park T, Wang X H, et al. 2019. China and India lead in greening of the world through land-use management. Nature Sustainability, 2(2): 122−129.
|
|
Cleugh H A, Leuning R, Mu Q Z, et al. 2007. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106(3): 285−304.
|
|
Gao Q Z, Guo Y Q, Xu H M, et al. 2016. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Science of the Total Environment, 554: 34−41.
|
|
Han C B, Ma Y M, Wang B B, et al. 2021. Long-term variations in actual evapotranspiration over the Tibetan Plateau. Earth System Science Data, 13(7): 3513−3524.
|
|
Jiang Y Z, Tang R L, Li Z L. 2022. A framework of correcting the angular effect of land surface temperature on evapotranspiration estimation in single-source energy balance models. Remote Sensing of Environment, 283: 113306.
|
|
McVicar T R, Li L T, Van Niel T G, et al. 2007. Developing a decision support tool for China’s re-vegetation program: simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. Forest Ecology and Management, 251(1/2): 65−81.
|
|
Monteith J L. 1965. Evaporation and environment. Symposia of the Society for Experimental Biology, 19: 205−34
|
|
Niu Z E, He H L, Zhu G F, et al. 2019. An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming. Agricultural and Forest Meteorology, 279: 107701.
|
|
Park J, Choi M. 2015. Estimation of evapotranspiration from ground-based meteorological data and global land data assimilation system (GLDAS). Stochastic Environmental Research and Risk Assessment, 29(8): 1963−1992.
|
|
Penman H L. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032): 120−145.
|
|
Priestley C H B, Taylor R J. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2): 81−92.
|
|
Shuttleworth W J, Wallace J S. Evaporation from sparse crops-an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 1985, 111 (469): 839- 855.
doi: 10.1002/qj.49711146910
|
|
Teuling A J, de Badts E A G, Jansen F A, et al. 2019. Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe. Hydrology and Earth System Sciences, 23(9): 3631−3652.
|
|
Velpuri N M, Senay G B, Singh R K, et al. 2013. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: using point and gridded FLUXNET and water balance ET. Remote Sensing of Environment, 139: 35−49.
|
|
Vinukollu R K, Meynadier R, Sheffield J, et al. 2011. Multi-model, multi-sensor estimates of global evapotranspiration: climatology, uncertainties and trends. Hydrological Processes, 25(26): 3993−4010.
|
|
Zhang J H, Zhang Y L, Sun G, et al. 2022. Climate variability masked greening effects on water yield in the Yangtze River Basin during 2001—2018. Water Resources Research, 58(1): e2021wr030382.
|
|
Zhang K, Kimball J S, Nemani R R, et al. 2015. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Scientific Reports, 5: 15956.
|
|
Zhang Y Q, Kong D D, Gan R, et al. 2019. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002—2017. Remote Sensing of Environment, 222: 165−182.
|