林业科学 ›› 2021, Vol. 57 ›› Issue (9): 98-109.doi: 10.11707/j.1001-7488.20210910
宋娟1,吴祝华1,翁行良2,赵邢2,杨学祥2,唐荣林2,曹兵2,巫昱2,沈厚宇2,任嘉红3,陈凤毛1,*
收稿日期:
2020-09-04
出版日期:
2021-09-25
发布日期:
2021-11-29
通讯作者:
陈凤毛
基金资助:
Juan Song1,Zhuhua Wu1,Xingliang Weng2,Xing Zhao2,Xuexiang Yang2,Ronglin Tang2,Bing Cao2,Yu Wu2,Houyu Shen2,Jiahong Ren3,Fengmao Chen1,*
Received:
2020-09-04
Online:
2021-09-25
Published:
2021-11-29
Contact:
Fengmao Chen
摘要:
目的: 为探明湖北、安徽两省20个典型采样地枫香根际丛枝菌根真菌(AMF)多样性,对枫香根际土壤中AMF种类、分布、菌根侵染等状况进行调查,初步了解该地区枫香林区AMF资源情况,为进一步探究当地枫香林地AMF群落结构及其生理生态功能提供参考。方法: 以10、20、50和100年生枫香为对象,采集枫香根际5~25 cm土壤样品,测定土壤理化性质。试验基于形态特征对分离的AMF孢子进行分类鉴定,利用KOH脱色锥虫蓝染色法观察20个采样地枫香根系的AMF侵染状况。冗余分析(RDA)探讨枫香根际丛枝菌根真菌与土壤因子的关系。结果: 1)20个样本中97.65%的枫香根样均检测到了AMF侵染,侵染率为49.43%~73.84%,平均侵染率为62.07%,安徽稽灵山枫香根样侵染率最高(73.84%),湖北九峰山森林公园枫香根样侵染率最低(49.43%)。根内真菌丛枝和泡囊较多,呈均匀分布,表明枫香容易被AMF侵染,但不同采样点之间无显著差异(P>0.05)。2)取样地土壤中分离出AMF孢子数为[86~275个·(50 g)-1]土,平均孢子密度为166个·(50 g)-1土,表现为安徽稽灵山最高[275个·(50 g)-1土],安徽黄山最低[86个·(50 g)-1土]。3)通过形态学鉴定,共分离AM真菌11属46种,其中球囊霉属12种、无梗囊霉属13种、盾巨孢囊霉属5种,为取样地区枫香根际土壤AM真菌的优势属。4)土壤总球囊霉素和易提取球囊霉素含量分别在1.01~2.01 mg·g-1和0.62~0.84 mg·g-1之间。5)不同取样点枫香根际土壤AM真菌的属数、Shannon(香农)和Simpson多样性指数呈显著性差异(P < 0.05),并发现黄山林科院AMF的均匀度指数(1.04 ±0.03)和香农指数(3.55 ±0.04)最高。6)RDA分析可知枫香根际土壤过氧化氢酶活性、土壤有机质、土壤pH值和土壤蔗糖酶活性与AMF多样性呈显著相关(P < 0.05)。其中土壤pH和土壤过氧化氢酶活性对AMF多样性影响最大,土壤蔗糖酶活性和总球囊霉素含量呈显著正相关(R=0.705,P < 0.05)。结论: 湖北、安徽两省的20个样地人工林和天然林枫香根际均可形成丛枝菌根,根际土壤中的AMF孢子多样性丰富,球囊霉属为优势菌群。本研究结合AMF在生态系统中的分布特点,为开发枫香专用AMF肥料提供了丰富的菌种资源。
中图分类号:
宋娟,吴祝华,翁行良,赵邢,杨学祥,唐荣林,曹兵,巫昱,沈厚宇,任嘉红,陈凤毛. 枫香根际丛枝菌根真菌多样性[J]. 林业科学, 2021, 57(9): 98-109.
Juan Song,Zhuhua Wu,Xingliang Weng,Xing Zhao,Xuexiang Yang,Ronglin Tang,Bing Cao,Yu Wu,Houyu Shen,Jiahong Ren,Fengmao Chen. Diversity of Arbuscular Mycorrhizal Fungi in Rhizosphere of Liquidambar formosana[J]. Scientia Silvae Sinicae, 2021, 57(9): 98-109.
表1
枫香根际土壤理化性质①"
省份Province | 采样地点Sampling sites | 土壤含水量Soil moisture(%) | 土壤类型Soil type | 过氧化氢酶活性Catalase activity/ (U·g-1) | 土壤有机质含量Soil organic carbon content/(mg·kg-1) | pH | 蔗糖酶活性Saccharase activity/ (U·g-1) |
安徽Anhui | 黄山Mount Huangshan | 19.30±0.12 b | 栗褐土Castano-cinnamon soils | 2.80 ± 0.03 a | 2.85 ± 0.01 a | 5.62 ± 1.12 a | 4.20 ± 0.30 b |
稽灵山Jiling Mountain | 20.20±0.09 a | 褐土Cinnamon soil | 1.00 ± 0.02 c | 1.71 ± 0.02 bc | 4.29 ± 0.17 b | 2.33 ± 0.25 c | |
黄山林科院Huangshan Academy of Forestry | 16.76±0.16 d | 黄壤Yellow soil | 0.90 ± 0.02 c | 1.14 ± 0.57 c | 4.79 ± 0.44 ab | 3.70 ± 0.33 d | |
湖北Hubei | 湖北九峰山森林公园Hubei Jiufeng National Forest Park | 15.20±0.08 e | 褐土Cinnamon soil | 1.00 ± 0.03 c | 2.28 ± 0.58 ab | 3.78 ± 0.03 b | 6.23 ± 0.25 a |
武汉三角山Wuhan Sanjiao Mountain | 18.40±0.07 c | 褐土Cinnamon soil | 1.60 ± 0.02 b | 2.78 ± 0.27 a | 4.19 ± 0.23 b | 4.28 ± 0.20 b |
表2
不同样地枫香植物根系AM真菌种类"
属Genus | 种Species | 安徽Anhui | 湖北Hubei | 相对多度Relative abundance (%) | 频度Frequency (%) | 重要值Importance value (%) | ||||
黄山Huangshan Mount | 稽灵山Jiling Mountain | 黄山林科院Huangshan Academy of Forestry | 湖北九峰山森林公园Hubei Jiufeng National Forest Park | 武汉三角山Wuhan Sanjiao Mountain | ||||||
球囊霉属Glomus | 黑球囊霉G. melanosporum | + | + | + | + | + | 8.55 | 100.00 | 54.28 | |
地球囊霉G. geosporum | + | + | + | + | + | 6.99 | 100.00 | 53.49 | ||
悬钩子球囊霉G. rubiforme | - | - | - | + | + | 0.84 | 40.00 | 20.42 | ||
台湾球囊霉G. tanwanensis | - | - | + | - | - | 0.60 | 20.00 | 10.30 | ||
团集球囊霉G. glomerulatum | - | - | - | + | - | 0.36 | 20.00 | 10.18 | ||
海得拉巴球囊霉G. hyderabadensis | - | - | - | - | + | 0.24 | 20.00 | 10.12 | ||
多梗球囊霉G. multicaule | + | + | + | + | - | 2.05 | 80.00 | 41.02 | ||
莫顿球囊霉G. mortonii | - | - | + | + | - | 0.96 | 40.00 | 20.48 | ||
宝岛球囊霉G. formosanum | - | - | + | + | - | 0.84 | 40.00 | 20.42 | ||
扭型球囊霉G. tortuosum | + | + | - | - | - | 0.48 | 40.00 | 20.24 | ||
萌性球囊霉G. tenebrosum | - | - | - | + | + | 0.48 | 40.00 | 20.24 | ||
小果球囊霉G. microcarpum | - | + | - | + | + | 1.08 | 60.00 | 30.54 | ||
无梗囊霉属Acaulospore | 蜜色无梗囊霉A. mellea | + | + | + | + | + | 7.95 | 100.00 | 53.98 | |
光壁无梗囊霉A. laevis | + | + | + | - | - | 2.65 | 60.00 | 31.33 | ||
瑞氏无梗囊霉A. rehmii | + | + | + | - | - | 2.29 | 60.00 | 31.14 | ||
附柄无梗囊霉A. appendicola | - | - | - | + | + | 0.60 | 40.00 | 20.30 | ||
双网无梗囊霉A. bireticulata | + | + | + | - | - | 1.69 | 60.00 | 30.84 | ||
孔窝无梗囊霉A. foveata | + | + | + | + | + | 6.14 | 100.00 | 53.07 | ||
浅窝无梗囊霉A. lacunosa | - | + | + | + | + | 2.65 | 100.00 | 51.33 | ||
疣状无梗囊霉A. tuberculata | + | + | + | - | - | 1.08 | 60.00 | 30.54 | ||
细凹无梗囊霉A. scrobiculata | + | - | + | + | - | 1.33 | 60.00 | 30.66 | ||
凹坑无梗囊霉A. excavata | - | + | + | - | - | 2.17 | 40.00 | 21.08 | ||
椒红无梗囊霉A. capsicula | - | + | - | + | - | 1.20 | 40.00 | 20.60 | ||
柯氏无梗囊霉A. koskei | - | - | + | + | - | 0.72 | 40.00 | 20.36 | ||
蜜色无梗囊霉A. spinosa | + | + | - | - | + | 1.20 | 60.00 | 30.60 | ||
盾巨孢囊霉属Scutellospora | 疣壁盾巨孢囊霉S. verrucosa | - | - | - | + | - | 0.36 | 20.00 | 10.18 | |
黑盾巨孢囊霉S. nigra | + | - | + | - | + | 1.45 | 60.00 | 30.72 | ||
双紫盾巨孢囊霉S. dipurpurescens | - | - | + | + | - | 0.36 | 40.00 | 20.18 | ||
美丽盾巨孢囊霉S. calospora | - | + | + | + | - | 3.01 | 60.00 | 31.51 | ||
群生盾巨孢囊霉S. gregaria | + | + | + | + | + | 5.78 | 100.00 | 52.89 | ||
巨孢囊霉属Gigaspora | 易误巨孢囊霉G. decipiens | - | - | - | + | + | 0.36 | 40.00 | 20.18 | |
极大巨孢囊霉G. gigantea | - | - | - | + | - | 0.36 | 20.00 | 10.18 | ||
近明囊霉属Claroideoglomus | 近明球囊霉C. claroideum | + | - | + | + | - | 1.81 | 60.00 | 30.90 | |
幼套球囊霉C. etunicatum | - | + | + | - | + | 2.65 | 60.00 | 31.33 | ||
层状球囊霉C. lamellosum | - | - | + | + | - | 0.48 | 40.00 | 20.24 | ||
纯黄球囊霉C. luteum | - | - | + | + | + | 0.36 | 60.00 | 30.18 | ||
管孢囊霉属Funneliformis | 两型球囊霉F. dimorphicus | - | - | - | + | - | 0.12 | 20.00 | 10.06 | |
苏格兰球囊霉F. caledonium | - | + | - | - | + | 1.33 | 40.00 | 20.66 | ||
疣突球囊霉F. verruculosum | - | - | - | + | - | 1.45 | 20.00 | 10.72 | ||
缩球囊霉F. constrictum | + | - | + | - | + | 1.81 | 60.00 | 30.90 | ||
平囊霉属Pacispora | 方竹球囊霉P. chimonobambusae | - | - | - | + | + | 1.08 | 40.00 | 20.54 | |
根生囊霉属Rhizophagus | 木薯球囊霉R. manihotis | + | - | + | - | + | 1.20 | 60.00 | 30.60 | |
聚生球囊霉R. fasciculatus | - | + | + | + | - | 1.33 | 60.00 | 30.66 | ||
多样孢囊霉属Diversispora | 象牙白球囊霉D. eburnea | - | - | - | + | + | 0.48 | 40.00 | 20.24 | |
隔球囊霉属Septoglomus | 黏质球囊霉S. viscosum | - | + | + | - | - | 2.05 | 40.00 | 21.02 | |
两性囊霉属Ambispora | 詹氏双型囊霉A. jimgerdemannii | - | + | + | + | - | 1.81 | 60.00 | 30.90 |
表3
枫香根际AMF多样性①"
采样点Sampling site | 属数Genus number | 种的丰度Species richness | Shannon | Simpson | 均匀度Pielou |
黄山Mount Huangshan | 6 ± 1.00 c | 16 ± 3.00 c | 2.66 ± 0.02 b | 0.92 ± 0.02 b | 0.96 ± 0.03 b |
稽灵山Jiling Mountain | 8 ± 1.00 b | 22 ± 2.00 b | 2.46 ± 0.06 c | 0.97 ± 0.03 a | 0.80 ± 0.10 c |
黄山林科院Huangshan Academy of Forestry | 9 ± 1.00 ab | 30 ± 2.00 a | 3.55 ± 0.04 a | 0.98 ± 0.03 c | 1.04 ± 0.03 a |
湖北九峰山森林公园Jiufeng National Forest Park | 10 ± 2.00 a | 31 ± 1.00 a | 2.47 ± 0.02 c | 0.96 ± 0.02 a | 0.72 ± 0.02 d |
武汉三角山Wuhan Sanjiao Mountain | 9 ± 2.00 ab | 21 ± 1.00 b | 2.28 ± 0.02 d | 0.97 ± 0.01 a | 0.75 ± 0.01 cd |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 30- 165. | |
Bao S D . Soil agrochemistry. Beijing: China Agriculture Press, 2000: 30- 165. | |
弓明钦, 陈应龙, 仲崇禄. 菌根研究及应用. 北京: 中国林业出版社, 1997. | |
Gong M Q , Chen Y L , Zhong C L . Mycorrhiza research and application. Beijing: Chinese Forestry Publishing House, 1997. | |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
Guan S Y . Soil enzymes and their research methods. Beijing: Agriculture Press, 1986. | |
洪震, 刘术新, 洪琮浩, 等. 5种造林树种对干旱胁迫的抗性应答. 南京林业大学学报: 自然科学版, 2021, 45 (2): 111- 119. | |
Hong Z , Liu S X , Hong Z H , et al. Physiological response and resistance evaluation of five afforestation tree species under drought stress. Journal of Nanjing Forestry University: Nature Science Edition, 2021, 45 (2): 111- 119. | |
胡文杰, 庞宏东, 胡兴宜, 等. 9年生枫香的遗传变异和优良家系单株选择. 热带亚热带植物学报, 2018, 26 (5): 506- 514. | |
Hu W J , Pang H D , Hu X Y , et al. Genetic variation, excellent family and individual selection of 9-year-old liquidambar formosana. Journal of Tropical and Subtropical Botany, 2018, 26 (5): 506- 514. | |
黄京华, 孙晨瑜. 浅析丛枝菌根共生的生态学意义. 中南民族大学学报, 2018, 37 (4): 49- 54. | |
Huang J H , Sun C Y . Ecological significance of arbuscular mycorrhizal symbiosis. Journal of South-Central University for Nationalities, 2018, 37 (4): 49- 54. | |
黄立军, 刘介东, 张朝旺, 等. 枫香优良家系选择试验初报. 广东林业科技, 2015, 2, 72- 76.
doi: 10.3969/j.issn.1006-4427.2015.01.015 |
|
Huang L J , Liu J D , Zhang C W , et al. A preliminary study on selection of excellent families from Liquidambar formosana. Guangdong Forestry Science and Technology, 2015, (2): 72- 76.
doi: 10.3969/j.issn.1006-4427.2015.01.015 |
|
李晓林, 冯固. 丛枝菌根生态生理. 北京: 华文出版社, 2001: 269- 275. | |
Li X L , Feng G . Arbuscular mycorrhizal ecology and physiology. Beijing: Sino-Culture Press, 2001: 269- 275. | |
李一叶, 何兴元, 张忠泽, 等. 长白山赤杨丛枝菌根真菌多样性的半巢式LP-PCR-SSCP检测分析. 应用生态学报, 2003, 14 (11): 29- 33. | |
Li Y Y , He X Y , Zhang Z Z , et al. Semi-nested LP-PCR-SSCP identification of arbuscular endomycorrhizal fungi diversity of Alnus at Changbai Mountain. Chinese Journal of Applied Ecology, 2003, 14 (11): 29- 33. | |
廖楠. 2016. 广西甘蔗根际土壤丛枝菌根(AM) 真菌多样性研究. 桂林: 广西师范大学硕士学位论文. | |
Liao N. 2016. Study on the diversity of arbuscular mycorrhizal(AM) fungi in the rhizosphere soil of sugarcane in Guangxi. Guilin: MS thesis of Guangxi Normal University. [in Chinese] | |
刘辉, 陈梦, 黄引娣, 等. 安徽茶区茶树丛枝菌根真菌多样性. 应用生态学报, 2017, 28 (9): 2897- 2906. | |
Liu H , Chen M , Huang Y D , et al. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of tea plant from Anhui tea area. Chinese Journal of Applied Ecology, 2017, 28 (9): 2897- 2906. | |
刘润进, 焦惠, 李岩, 等. 丛枝菌根真菌物种多样性研究进展. 应用生态学报, 2009, 20 (9): 2301- 2307. | |
Liu R J , Jiao H , Li Y , et al. Research advances in species diversity of arbuscular mycorrhlzal fungi. Chinese Journal of Appliced Ecology, 2009, 20 (9): 2301- 2307. | |
刘伟, 王敏彪, 杜有新, 等. 林窗大小对2种针叶林更新效果的初步分析. 生态与农村环境学报, 2019, 35 (10): 1299- 1306. | |
Liu W , Wang M B , Du Y X , et al. Preliminary analysis on regeneration effects of gap size in two coniferous plantations. Journal of Ecology and Rural Environment, 2019, 35 (10): 1299- 1306. | |
裴云霞, 曹健, 杜克兵, 等. 贮藏温度对枫香种子耐贮性的影响. 林业科学研究, 2020, 33 (5): 55- 60. | |
Pei Y X , Cao J , Du K B , et al. Effects of storage temperature on seed storability of Liquidambar formosana. Forest Research, 2020, 33 (5): 55- 60. | |
任爱天, 鲁为华, 杨洁晶, 等. 石河子绿洲区苜蓿地丛枝菌根真菌的多样性及与土壤因子的关系. 新疆草业科学, 2014, 31 (9): 1666- 1672. | |
Ren A T , Lu W H , Yang J J , et al. Arbuscular mycorrhizal fungi diversity and its relationship with soil environmental factors in oasis alfalfa planting of Shihezi. Pratacultural Science, 2014, 8 (9): 1666- 1672. | |
任嘉红, 张静飞, 刘瑞祥, 等. 南方红豆杉丛枝菌根(AM)的研究. 西北植物学报, 2008, 28 (7): 1468- 1473.
doi: 10.3321/j.issn:1000-4025.2008.07.030 |
|
Ren J H , Zhang J F , Liu R X , et al. Study on arbuscular mycorrhizae in Taxus chinensis var. mairei. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28 (7): 1468- 1473.
doi: 10.3321/j.issn:1000-4025.2008.07.030 |
|
史久洲, 姬晓悦, 陈继超, 等. SPME/GC-MS分析不同产地枫香树脂中挥发性成分. 南京林业大学学报: 自然科学版, 2020, 44 (5): 239- 244. | |
Shi J Z , Ji X Y , Chen J C , et al. An investigation of volatile components in Liquidambar resin from different areas using SPME/GC-MS. Journal of Nanjing Forestry University: Nature Science Edition, 2020, 44 (5): 239- 244. | |
施晓峰, 黄晶晶, 史亚, 等. 半夏丛枝菌根真菌多样性研究. 陕西中医药大学学报, 2017, 40 (3): 75- 81. | |
Shi X F , Huang J J , Shi Y , et al. On AMF diversity of Pinellia ternata. Journal of Shaanxi University of Chinese Medicine, 2017, 40 (3): 75- 81. | |
宋娟, 徐国芳, 赵邢, 等. 枫香根际解有机磷细菌筛选及其促生效应. 南京林业大学学报: 自然科学版, 2020, 44 (3): 95- 104. | |
Song J , Xu G F , Zhao X , et al. Screening of indigenous phosphate solubilizing bacteria from Liquidambar formosana Hance rhizosphere and its potential applications for improving plant growth. Journal of Nanjing Forestry University: Nature Science Edition, 2020, 44 (3): 95- 104. | |
唐生森, 陈虎, 覃永康, 等. 枫香秋季变色期叶色变化及其生理基础. 广西植物, 2020, (12): 1- 8. | |
Tang S S , Chen H , Qin Y K , et al. Leaf color changes of Liquidambar formosana in autumn and its physiological basis. Guihaia, 2020, (12): 1- 8. | |
吴丽莎, 王玉, 李敏, 等. 崂山茶区茶树根围AM真菌多样性. 生物多样性, 2009, 17 (5): 499- 505.
doi: 10.3724/SP.J.1003.2009.08350 |
|
Wu L S , Wang Y , Li M , et al. Arbuscular mycorrhizal fungi diversity in the rhizosphere of tea plant(Camellia sinensis) grown in Laoshan, Shandong. Biodiversity Science, 2009, 17 (5): 499- 505.
doi: 10.3724/SP.J.1003.2009.08350 |
|
杨泉女, 周权驹, 吴松健, 等. 3, 5-二硝基水杨酸法与酶法测定甜玉米还原糖和蔗糖含量的比较. 中国农业科技导报, 2017, 19 (11): 131- 137. | |
Yang Q N , Zhou Q J , Wu S J , et al. Comparison of 3, 5-dinitrosalicylic acid method and enzymatic method in the determination of sugar and sucrose content in sweet corn. Journal of Agricultural Science and Technology, 2017, 19 (11): 131- 137. | |
张玲, 王树凤, 陈益泰, 等. 3种枫香的根系构型及功能特征对干旱的响应. 土壤, 2013, 45 (6): 1119- 1126. | |
Zhang L , Wang S F , Chen Y T , et al. Response of architecture and functions of roots in three kinds of sweet gums under drought stress. Soils, 2013, 45 (6): 1119- 1126. | |
Armansyah A , Anwar A , Syarif A , et al. Exploration and identification of the indigenous arbuscular mycorrhizae fungi(AMF) in the rhizosphere of citronella(Andropogon nardus L. ) in the dry land regions in West Sumatra Province, Indonesia. International Journal of Advanced Research, 2018, 6 (9): 153- 158. | |
Aroca R , Porcel R , Ruiz-Lozano J M . How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses. New Phytologist, 2010, 173 (4): 808- 816. | |
Baddeley J A , Watson C A . Influences of root diameter, tree age, soil depth and season on fine root survivorship in Prunus avium. Plant and Soil, 2005, 276 (1/2): 15- 22. | |
Begum N , Qin C , Ahanger M A , et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 2019, 10 (9): 1068. | |
Bever J D , Richardson S C , Lawrence B M , et al. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecology Letters, 2009, 12 (1): 13- 21.
doi: 10.1111/j.1461-0248.2008.01254.x |
|
Błaszkowski J , Kovács G M , Gáspár B K , et al. The arbuscular mycorrhizal Paraglomus majewskii sp. nov. represents a new distinct basal lineage in Paraglomeraceae(Glomeromycota). Mycologia, 2012, 104 (1): 148- 156. | |
Bonner M T L , Shoo L P , Brackin R , et al. Relationship between microbial composition and substrate use efficiency in a tropical soil. Geoderma, 2018, 315 (4): 96- 103. | |
Bradley R , Burt A J , Read D J . Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature, 1981, 292 (5821): 335- 337.
doi: 10.1038/292335a0 |
|
Briccoli B C , Santilli E , Lombardo L . Effect of arbuscular mycorrhizal fungi on growth and on micronutrient and macronutrient uptake and allocation in olive plantlets growing under high total Mn levels. Mycorrhiza, 2015, 25 (2): 97- 108.
doi: 10.1007/s00572-014-0589-0 |
|
Cornejo P , Seguel A , Aguilera P , et al. Arbuscular mycorrhizal fungi improves tolerance of agricultural plants to cope abiotic stress conditions//Singh D P. Plant-microbe interactions in agro-ecological perspectives, Vol 2. Microbial Interactions and Agro-ecological Impacts. Singapore. Springer, 2017, 55- 80. | |
Dalli Y , Yahia N , Bekki A . Diversity of arbuscular mycorrhizal fungi assoclated with carob trees(Ceratonia siliqua L. ) in western algeria. Plant Cell Biotechnology and Molecular Biology, 2020, 21 (17/18): 180- 193. | |
Davison J , Moora M , Pik M , et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 2015, 349 (6251): 970- 973.
doi: 10.1126/science.aab1161 |
|
Don A , Böhme I H , Dohrmann A B , et al. Microbial community composition affects soil organic carbon turnover in mineral soils. Biology and Fertility of Soils, 2017, 53 (3): 445- 456.
doi: 10.1007/s00374-017-1198-9 |
|
Guo H C , Wang W B , Luo X H , et al. Variations in rhizosphere microbial communities of rubber plantations in Hainan Island, China. Journal of Rubber Research, 2013, 16 (4): 243- 256. | |
Hanin M , Ebel C , Ngom M , et al. New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science, 2016, 7 (11): 1787. | |
Harrison M J . Cellular programs for arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2012, 15 (6): 691- 698.
doi: 10.1016/j.pbi.2012.08.010 |
|
Herrmann L , Lesueur D , Davison J , et al. Diversity of root-associated arbuscular mycorrhizal fungal communities in a rubber tree plantation chronosequence in Northeast Thailand. Mycorrhiza, 2016, 26 (8): 1- 15. | |
Hiiesalu I , Pärtel M , Davison J , et al. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytologist, 2014, 203 (1): 233- 244.
doi: 10.1111/nph.12765 |
|
Hugoni M , Luis P , Guyonnet J , et al. Plant host habitat and root exudates shape fungal diversity. Mycorrhiza, 2018, 28 (8): 451- 463. | |
Ianson D C , Allen M F . The effects of soil texture on extraction of vesicular arbuscular mycorrhizal spores from arid soils. Mycologia, 1986, 78 (2): 164- 168.
doi: 10.2307/3793161 |
|
Kivlin S N , Hawkes C V , Treseder K K . Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 2011, 43 (11): 2294- 2303.
doi: 10.1016/j.soilbio.2011.07.012 |
|
Lan G Y , Li Y W , Wu Z X , et al. Soil bacterial diversity impacted by conversion of secondary forest to rubber or eucalyptus plantations: a case study of Hainan Island, South China. Forest Science, 2017, 67 (1): 87- 93. | |
Li X , Dodson J , Zhou X , et al. Vegetation characteristics in the western Loess plateau between 5200 and 4300 cal. based on fossil charcoal records. Vegetation History & Archaeobotany, 2013, 22 (1): 61- 70.
doi: 10.1007/s00334-011-0344-9 |
|
Medina A , Vassilev N , Azcón R . The interactive effect of an AM fungus and an organic amendment with regard to improving inoculum potential and the growth and nutrition of Trifolium repens in Cd-contaminated soils. Applied Soil Ecology, 2010, 44 (2): 181- 189.
doi: 10.1016/j.apsoil.2009.12.004 |
|
Muleta D , Assefa F , Nemomissa S , et al. Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biology and Fertility of Soils, 2008, 44 (4): 653- 659.
doi: 10.1007/s00374-007-0261-3 |
|
Pereira C M R , Da S D , De A A C , et al. Diversity of arbuscular mycorrhizal fungi in Atlantic forest areas under different land uses. Agriculture, Ecosystems and Environment, 2014, 185 (3): 245- 252. | |
Philips J M , Hayman D S . Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions British Mycological Society, 1970, 55 (1): 158- 163.
doi: 10.1016/S0007-1536(70)80110-3 |
|
Ruizlozano J M , Porcel R , Azcón C , et al. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. Journal of Experimental Botany, 2012, 63 (11): 4033.
doi: 10.1093/jxb/ers126 |
|
Santander C , Sanhueza M , Olave J , et al. Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance. Journal of Soil Science and Plant Nutrition, 2019, 19 (2): 321- 331.
doi: 10.1007/s42729-019-00032-z |
|
Song J , Chen L , Chen F , et al. Edaphic and host plant factors are linked to the composition of arbuscular mycorrhizal fungal communities in the root zone of endangered Ulmus chenmoui Cheng in China. Ecology and Evolution, 2019, 9 (15): 8900- 8910.
doi: 10.1002/ece3.5446 |
|
ter Braak C J F, Smilauer P. 2002. Canoco reference manual and Cano Draw for Windows User's guide: software for canonical community ord. Ithaca Ny Usa Www. 500p. | |
Urbanová M , Šnajdr J , Baldrian P . Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry, 2015, 84 (5): 53- 64. | |
Van der Heijden M G M , Martin F M , Selosse M , et al. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 2015, 205 (4): 1406- 1423.
doi: 10.1111/nph.13288 |
|
Wright S F , Upadhyaya A , Buyer J S . Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biology & Biochemistry, 1998, 30 (13): 1853- 1857. | |
Wu Q S , Srivastava A K , Zou Y N . Amf-induced tolerance to drought stress in citrus: a review. Scientia Horticulturae, 2013, 164 (12): 77- 87. |
[1] | 何经纬,张伊莹,田呈明,熊典广,梁英梅. 区域景观格局对杨树锈病为害流行的影响——以北京延庆地区银白杨为例[J]. 林业科学, 2020, 56(4): 99-108. |
[2] | 高磊,王建国,王章训,李猷,鞠瑞亭. 危险性害虫枫香刺小蠹的形态特征及发生现状[J]. 林业科学, 2020, 56(3): 193-198. |
[3] | 段剑, 王凌云, 杨洁, 喻驰方, 万佳蕾, 刘忠. 马尾松与枫香根际土壤浸提物的化学成分[J]. 林业科学, 2015, 51(8): 8-15. |
[4] | 王建军, 张波, 张望舒. 枫香新品种‘金珏’[J]. 林业科学, 2015, 51(10): 154-154. |
[5] | 宋福强, 孔祥仕, 李季泽, 常伟. 基于抑制消减杂交技术筛选AM真菌与紫穗槐共生相关基因[J]. 林业科学, 2014, 50(11): 64-74. |
[6] | 宰学明, 郝振萍, 赵辉, 钦佩. 丛枝菌根化滨梅苗的根际微生态环境[J]. 林业科学, 2014, 50(1): 41-48. |
[7] | 刘振坤, 田帅, 唐明. 不同树龄刺槐林丛枝菌根真菌的空间分布及与根际土壤因子的关系[J]. 林业科学, 2013, 49(8): 89-95. |
[8] | 李登武;薛玲;张万红. 黄土丘陵沟壑区丛枝菌根真菌多样性及其分布[J]. 林业科学, 2011, 47(7): 116-122. |
[9] | 赵萌 方晰 田大伦. 第2代杉木人工林地土壤微生物数量与土壤因子的关系[J]. 林业科学, 2007, 43(6): 7-12. |
[10] | 段新芳 曹远林 曹永建 周冠武 陈永圣 朱家琪 赵保路. 漆酶活化处理对木材自由基变化的影响[J]. 林业科学, 2007, 43(4): 134-136. |
[11] | 唐明 陈辉 高延锋. 5种林木的11个丛枝菌根菌株分子遗传初步研究[J]. 林业科学, 2006, 42(1): 126-128. |
[12] | 闫文德 田大伦 陈书军 向建林 向东. 4个树种茎流养分特征研究[J]. 林业科学, 2005, 41(6): 50-56. |
[13] | 方乐金 施季森 李力 吴小龙 史廷先. 枫香子代性状的遗传变异分析[J]. 林业科学, 2003, 39(3): 148-152. |
[14] | 唐明,陈辉,商鸿生. 丛枝菌根真菌(AMF)对沙棘抗旱性的影响[J]. 林业科学, 1999, 35(3): 48-52. |
[15] | 徐小牛,李宏开. 马尾松枫香混交林生长及其效应研究[J]. 林业科学, 1997, 33(5): 385-393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||