林业科学 ›› 2021, Vol. 57 ›› Issue (9): 168-180.doi: 10.11707/j.1001-7488.20210917
王翠翠,李明鹏,王戈,顾少华,程海涛*
收稿日期:2020-06-12
									
				
									
				
									
				
											出版日期:2021-09-25
									
				
											发布日期:2021-11-29
									
			通讯作者:
					程海涛
												基金资助:Cuicui Wang,Mingpeng Li,Ge Wang,Shaohua Gu,Haitao Cheng*
Received:2020-06-12
									
				
									
				
									
				
											Online:2021-09-25
									
				
											Published:2021-11-29
									
			Contact:
					Haitao Cheng   
												摘要:
作为一种天然高分子材料,植物纤维来源丰富,成本低廉,密度小,比强度、比模量高,被认为是最具前景的生物可降解再生资源,其增强复合材料利用价值高、环保无污染,既可显著减少化石燃料的使用,也可降低温室气体排放量,具有巨大的市场价值和发展前景,如何高效利用植物纤维资源、开发高附加值实用产品、拓宽应用领域已成为科研界和工业界的研究焦点。在汽车轻量化趋势下,以植物纤维替代玻璃纤维等增强复合材料,不仅能降低生产成本、减少加工能耗,还有利于汽车零部件产品绿色循环低碳生命体系的构建,从而有效推动汽车工业的可持续发展。预浸料作为先进复合材料产品的中间体,对汽车轻量化的发展具有举足轻重的作用。本研究从植物纤维/热塑性聚合物预浸料着手,概述对其研究的必要性,并介绍增强相连续植物纤维的制备技术以及连续植物纤维/热塑性聚合物预浸料常用制备技术的优缺点和关键技术难点,重点从熔融浸渍、挤出-压延、薄膜层叠、熔融沉积成型等方面阐述连续植物纤维/热塑性聚合物预浸料的新兴制备技术,同时总结植物纤维/热塑性聚合物复合材料在汽车轻量化领域的应用,对比分析汽车传统门饰板和保险杠与薄壁化门饰板和保险杠的质量和生产成本,以期为连续植物纤维/热塑性聚合物预浸料在汽车轻量化领域占据一席之地提供理论支撑。最后,对连续植物纤维/热塑性聚合物预浸料的研究趋势进行几点展望,指出在以后研究工作中,可重点研究连续植物纤维的制备技术和均匀分散,有助于更薄预浸料的开发,从而消除纤维屈曲,提高结构可设计性,进一步降低制品成本;为实现低孔隙率、质量上乘、性能优异的连续植物纤维/热塑性聚合物预浸料的稳定生产,可有效联用现有制备技术,扬长避短,还可理论实践相结合进一步研制新的制造设备,改进生产工艺,实现材料、设备和工艺的一体化发展;同时,为促进连续植物纤维/热塑性聚合物预浸料的良性发展,有必要加快建立标准化评价体系以规范市场。
中图分类号:
王翠翠,李明鹏,王戈,顾少华,程海涛. 植物纤维/热塑性聚合物预浸料在汽车轻量化领域的应用进展[J]. 林业科学, 2021, 57(9): 168-180.
Cuicui Wang,Mingpeng Li,Ge Wang,Shaohua Gu,Haitao Cheng. Application Progress of Plant Fiber/Thermoplastic Polymer Prepreg in Automotive Lightweight Field[J]. Scientia Silvae Sinicae, 2021, 57(9): 168-180.
表2
常用制备技术比较"
| 制备技术 Preparation technology  |  优点 Advantages  |  缺点 Disadvantages  |  关键技术难点 Key technical difficulties  |  ||
| 预浸渍 Pre- impregnation  |  熔融浸渍法 (应用广泛) Melt impregnation (widely used)  |  ①工艺过程简单,成本低廉 Simple process and low cost ②挥发分含量低,无污染 Low volatile content, no pollution ③孔隙率低Low porosity ④可精确控制预浸料宽度、厚度以及纤维体积含量 Precise control the prepreg width, thickness, and fiber volume content ⑤高效稳定生产 Efficient and stable production ⑥特别适用于结晶性热塑性聚合物 Especially suitable for crystalline thermoplastic polymers  |  ①热塑性聚合物对增强纤维的浸润性和渗透性较差 Thermoplastic polymer has poor wetting and permeability to the reinforced fibers ②对仪器设备要求高 High requirement on instrument and equipment ③浸渍时间短 Short soaking time  |  ①纤维分散 Fiber dispersion ②完全浸润 Complete wetting  |  |
| 溶剂浸渍法 Solvent impregnation  |  ①设备简单Simple equipment ②成本低廉Low cost ③纤维浸润性和准直性好 The fiber is well infiltrated and collimated  |  ①具有局限性Limitation ②回收费用昂贵Expensive to recycle ③孔隙含量高High pore content ④不环保,危害人体健康Carbon penance, do damage to the human health ⑤结晶性热塑性树脂难以适用 It is difficult for this method to use the crystalline thermoplastic polymers  |  ①热塑性聚合物的溶解 The dissolution of thermoplastic polymers  |  ||
| 反应浸渍法 Reaction impregnation  |  ①热塑性聚合物基体先聚合成低分子质量的预聚体,其熔体黏度低,易于浸渍纤维 The thermoplastic polymer matrix is polymerized into a low molecular mass prepolymer, whose melt viscosity is low and it is easy to impregnate the fiber ②热塑性聚合物韧性好 The thermoplastic polymer has sufficient toughness  |  ①具有局限性Limitation ②工艺条件比较苛刻 Harsh process conditions ③反应不易控制 It is not easy to control the reaction ④不可连续生产 Noncontinuous production ⑤不具备实用价值 It has no practical value  |  ①聚合反应的控制 The control of poly- merization reaction  |  ||
| 后浸渍 After impregnation  |  粉末悬浮技术 Powder suspension technology  |  粉末浸渍法 Powder impregnation  |  ①热塑性聚合物基体分子质量损失小 Low molecular mass loss of thermoplastic polymer matrix ②工艺简单、成本低廉 Simple process, low cost ③浸渍速度快 Fast soaking ④生产效率高 High production efficiency ⑤适合批量生产 Suitable for mass production  |  ①热塑性聚合物粉末粒径要求严苛 Requirements of thermoplastic polymer powder particle size are strict ②粉末直径在5~10 μm之间为宜,而制备直径<10 μm的粉末难度较大( The powder diameter is 5-10 μm, but it is difficult to prepare the powder with diameter less than 10 μm ③易形成孔隙,导致制品缺陷 Easy to form pores, resulting in product defects ④易造成污染Easy to cause pollution  |  ①热塑性聚合物粉末的均匀分布 Uniform distribution of thermoplastic polymer powder ②纤维的均匀分散 Uniform dispersion of fibers  |  
| 悬浮预浸法 Suspension preleaching  |  ①预浸料流动性好 Prepreg has good fluidity ②适合制作几何形状复杂和薄壁结构的制品 It is suitable for making products with complex geometry and thin wall structure  |  ①技术难度高,设备投资大 High technical difficulty and equipment investment  |  ①热塑性聚合物纤维的制备 Preparation of thermoplastic polymer fibers ②混杂方式 Hybrid pattern  |  ||
| 纤维混杂技术 Fiber hybrid technique  |  混纤法 CN-CA 混编法 Mischen  |  ①易控制基体含量 Easy to control matrix content ②纤维能得到充分浸润 The fibers can be fully saturated ③尺寸稳定性高 High dimensional stability ④制品形状复杂 Products with complex geometry  |  ①纤维的屈曲和断裂损伤 Fiber buckling and fracture damage ②热塑性聚合物难以实现均匀浸润 Thermoplastic polymer is difficult to achieve uniform infiltration ③工艺复杂、生产成本高 Complicated technology, high production costs ④界面结合弱于粉末悬浮法 The interface binding state is weaker than the powder suspension method  |  ①热塑性聚合物粉末的均匀分布 The uniform infiltration of thermoplastic polymer  |  |
| 薄膜层叠法(标准技术) Film stacking technique(standard technology)  |  ①工艺简单Simple process ②生产效率高 High production efficiency ③材料质量好 Good material quality  |  ①成型条件苛刻,成型时间长;压力大,温度高;仅能用于模压制品的加工,加工工艺受限 Harsh molding condition, long molding time; high pressure and temperature; only be used for the processing of moulded products, processing technology is limited(  |  ①温度和压力的控制 Control of temperature and pressure  |  ||
| 熔融沉积成型 Fused deposition modeling (  |  一步法 One-step method  |  ①可实现快速制备 Rapid preparation can be realized ②可控制增强相含量 The content of reinforcing phase can be controlled  |  ①浸润效果不佳 Poor infiltration effect  |  ①热塑性聚合物基体对增强相的浸润效果 Infiltration effect of thermoplastic polymer on the reinforced phase  |  |
| 二步法 Two-step method  |  ①可进一步实现连续纤维浸渍 Further impregnation of continuous fiber can be achieved ②力学性能相对更好 The mechanical properties are relatively better  |  ①工艺相对较为复杂 Complex process ②成本较高 Higher cost  |  |||
表3
单根植物纤维的物理力学性能①"
| 类型 Types  |  长度 Length/mm  |  直径 Diameter/μm  |  拉伸强度 Tensile strength/GPa  |  弹性模量 MOE/GPa  |  断裂伸长率 Elongation (%)  |  横截面面积 Cross area/μm2  |  
| 毛竹Moso bamboo | 1~4 | 10~50 | 1.710(0.17) | 27.1(0.18) | 7.0(0.16) | 113(0.24) | 
| 杉木Chinese fir | 1~4 | 10~50 | 1.258(0.23) | 19.9(0.23) | 6.6(0.18) | 231(0.21) | 
| 洋麻Kenaf | 1~4 | 10~50 | 1.019(0.18) | 30.8(0.17) | 3.2(0.18) | 97(0.23) | 
| 苎麻Ramie | 40~140 | 30~40 | 1.001(0.15) | 11.4(0.17) | 8.9(0.18) | 337(0.23) | 
表4
常用热塑性聚合物的基本性能"
| 热塑性聚合物 Thermoplastic polymer  |  形态 Morphology  |  密度Density/(g·cm-3) | 玻璃化温度 Glass transition temperature/℃  |  熔点 Melting point/℃  |  热变形温度 Thermal deformation temperature/℃  |  加工温度 Processing temperature/℃  |  参考价格 Reference price ($·kg-1)  |  
| 聚丙烯PP | 结晶Crystal | 0.89~0.93 | -10 | 165 | 102 | 200~260 | 0.62 | 
| 聚乳酸PLA | 结晶Crystal | 1.20~1.30 | 54 | 155~185 | 67 | 170~230 | 3.37 | 
| 高密度聚乙烯HDPE | 结晶Crystal | 0.93~0.97 | -120 | 120 | 80 | 177~230 | 0.86 | 
| 聚酰胺PA | 结晶Crystal | 1.00~1.20 | 50 | 265 | 75 | 270~325 | 2.87~7.26 | 
| 聚对苯二甲酸乙二酯PET | 结晶Crystal | 1.37~1.40 | 81 | 245~260 | 85 | 260~290 | 0.81 | 
| 丙烯腈-丁二烯-苯乙烯ABS | 无定形Amorphism | 1.04~1.18 | 100 | — | 85 | 163~274 | 1.91 | 
| 聚碳酸酯PC | 无定形Amorphism | 1.20~1.22 | 150 | — | 135 | 250~310 | 3.42 | 
表5
木 & 麻纤维增强热塑性聚合物复合材料在汽车工业中的应用"
| 材料 Material  |  减重效果 Mass loss  |  应用案例 Application case  |  使用部位 Use the parts  |  优点 Advantages  |  缺点 Disadvantages  |  |
| 麻纤维复合材料 Hemp fiber composite  |  黄麻/PP Jute/PP  |  20%~30% | Mercedes, Benz, Ford, Chery中小型汽车 Small and medium-sized cars of Chery  |  吸噪板、备用轮罩、发动机护罩、前后保险杠 Noise protection sheet, spare wheel cowling, engine hood, bumper beams  |  ①可减轻整车质量 Reducing the mass of the vehicle ②麻纤维是众多植物纤维中最适合作复合材料的增强体 ① Hemp fiber is the most suitable reinforcement for composite materials among many plant fibers(  |  挥发性有机物的释放Release of volatile organic compounds | 
| 洋麻/PP Kenaf/PP  |  Volvo, Saab, Renault, Ford, SAAB9S | 汽车装饰部件、车门面板、座椅、靠板、顶棚、行李盘 Automobile decorative parts, door panel, seat, backup plate, roof board, luggage bearing board  |  ||||
| 亚麻/PP Flax/PP  |  Audi A4, BMW 3, Reynolds Twingo, Chevy Impala, Mercedes M, GM, Ford | 后备箱盖、车门衬板、冷却器架、后窗台饰板、后隔板的装饰衬板、座椅后背、引擎挡板 Trunk lid, door panel, cooler racks, rear window plaque, decorative plate of the back partition, back seat, engine damper  |  ||||
| 剑麻/PP Sisal/PP  |  Mercedes M, Ford, GM, | 座椅后背、车门面板 Back seat, door panel  |  ||||
| 大麻/PP Hemp/PP  |  Ford Focus, Ford Mondeo, SAAB9S | 车门面板、发动机护罩 Door panel, engine hood  |  ||||
| 黄 & 洋 & 苎麻/PP & PC & PE Jute & Kenaf & Ramie/PP & PC & PE  |  济南重汽斯太尔王、豪沃、江淮风商务车等 Jinan sinotruk steyr king, Howo, Jianghuai wind commercial vehicle, etc  |  — | ||||
| 木纤维复合材料 Wood fiber composite  |  20%~40% | 华晨宝马 Brilliance BMW  |  门板Door panel | ①可减轻整车质量 Reducing the mass of the vehicle ②木纤维成本低廉,约1 000 yuan·t-1 Wood fiber is cheap, about 1 000 yuan·t-1  |  木材供不应求 Demand for wood exceeds supply  |  |
| VW XL1 | 包括通风管道在内的汽车内饰件 Automotive interior including ventilation ducts  |  |||||
| Audi A1 | 行李箱承重板 Luggage bearing board  |  |||||
表7
传统汽车门饰板与薄壁化门饰板的质量和成本对比"
| 类别Type | 传统门饰板 Traditional door trim  |  薄壁化门饰板1 Thin-walled door trim 1  |  薄壁化门饰板2 Thin-walled door trim 2  |  
| 厚度Thickness/mm | 2.5 | 2.3 | 2.0 | 
| 质量Mass/kg | 1.94 | 1.78 | 1.55 | 
| 材料价格Price of material/(yuan·kg-1) | 16 | 16 | 18 | 
| 单件产品材料成本Material cost of single product/yuan | 31.02 | 26.54 | 27.92 | 
| 单件产品成型周期Cycle time of single product/s | 65 | 60 | 55 | 
| 单件产品加工费用Processing cost of single product/yuan | 8.45 | 7.8 | 7.15 | 
| 单件产品总成本Total cost of single product/yuan | 47.14 | 44.01 | 43.07 | 
|  
											  曹双平, 王戈, 余雁, 等.  几种植物单根植物纤维力学性能对比. 南京林业大学学报: 自然科学版, 2010, 34 (5): 87- 90. 
											 												 doi: 10.3969/j.issn.1000-2006.2010.05.019  | 
										|
|  
											   Cao S P ,  Wang G ,  Yu Y , et al.  Comparison of mechanical properties of different single vegetable fibers. Journal of Nanjing Forestry University: Natural Science Edition, 2010, 34 (5): 87- 90. 
											 												 doi: 10.3969/j.issn.1000-2006.2010.05.019  | 
										|
| 陈复明, 江泽慧, 王戈, 等. 单向及双轴向压缩载荷下的圆竹径向力学性能. 深圳大学学报: 理工版, 2012, 29 (6): 527- 533. | |
| Chen F M , Jiang Z H , Wang G , et al. Mechanical properties of bamboo with diametric uniaxial and biaxial compression tests. Journal of Shenzhen University: Science and Engineering, 2012, 29 (6): 527- 533. | |
|  
											  陈复明, 王戈, 程海涛, 等.  新型竹纤维复合材料的研发. 东北林业大学学报, 2016, 44 (2): 80- 85. 
											 												 doi: 10.3969/j.issn.1000-5382.2016.02.019  | 
										|
|  
											   Chen F M ,  Wang G ,  Cheng H T , et al.  Development of advanced bamboo fiber based composites material. Journal of Northeast Forestry, 2016, 44 (2): 80- 85. 
											 												 doi: 10.3969/j.issn.1000-5382.2016.02.019  | 
										|
| 程海涛, 顾少华, 张文福, 等. 2019. 一种连续均匀带状薄竹篾的制备方法. 中国, CN 110587740 A. | |
| Cheng H T, Gu S H, Zhang W F, et al. 2019. The preparation method of a continuous uniform strip thin bamboo strips. China. CN 110587740 A. [in Chinese] | |
| 程海涛, 李明鹏, 王戈, 等. 2020a. 一种连续竹纤维制备方法. 中国, 202010424890. 4. | |
| Cheng H T, Li M P, Wang G, et al. 2020a. A preparation method of the continuous bamboo fiber. China, 202010424890. 4. [in Chinese] | |
| 程海涛, 王翠翠, 张文福, 等. 2020b. 一种连续挤出热塑性植物纤维预浸料及其制备方法. 中国, CN 110684280 A. | |
| Cheng H T, Wang C C, Zhang W F, et al. 2020b. A continuous extruded thermoplastic plant fiber prepreg and its preparation method. China, CN 110684280 A. [in Chinese] | |
|  
											  崔永辉, 贾明印, 薛平, 等.  FDM技术制备连续纤维增强热塑性复合材料研究进展. 塑料工业, 2019, 47 (9): 5- 9. 
											 												 doi: 10.3969/j.issn.1005-5770.2019.09.002  | 
										|
|  
											   Cui Y H ,  Jia M Y ,  Xue P , et al.  Research progress of continuous fiber reinforced thermoplastic composites prepared by FDM technology. China Plastics Industry, 2019, 47 (9): 5- 9. 
											 												 doi: 10.3969/j.issn.1005-5770.2019.09.002  | 
										|
|  
											  党江涛, 郑志银.  单向连续竹纤维增强聚合物的拉伸性能. 力学季刊, 2006, 27 (4): 719- 725. 
											 												 doi: 10.3969/j.issn.0254-0053.2006.04.028  | 
										|
|  
											   Dang J T ,  Zheng Z Y .  Tensile performance of unidirectional continuous bamboo fiber reinforced polymer composite. Chinese Quarterly of Mechanics, 2006, 27 (4): 719- 725. 
											 												 doi: 10.3969/j.issn.0254-0053.2006.04.028  | 
										|
| 丁国庆, 李智. 2018. 一种采用低密度材料的薄壁化门板设计研究. 2018中国汽车工程学会年会论文集, 509-512. | |
| Ding G Q, Li Z. 2018. Study on design of thin-walled door panel with low density material. 2018 SAECCE-LW007, 509-512. [in Chinese] | |
|  
											  范宏玥, 陈礼辉, 苗庆显, 等.  毛竹竹原纤维的制备及其表征. 林业机械与木工设备, 2020, 48 (5): 37- 41. 
											 												 doi: 10.3969/j.issn.2095-2953.2020.05.010  | 
										|
|  
											   Fan H Y ,  Chen L H ,  Miao Q X , et al.  Preparation and characterization of natural moso bamboo fiber. Forestry Machinery & Woodworking Equipment, 2020, 48 (5): 37- 41. 
											 												 doi: 10.3969/j.issn.2095-2953.2020.05.010  | 
										|
| 方立. 2012. 连续纤维增强热塑性复合材料制备及其性能的研究. 上海: 华东理工大学博士学位论文. | |
| Fang L. 2012. Study on preparation and characters of continuous fiber reinforced thermoplastic composites. Shanghai: PhD thesis of East China University of Science and Technology. [in Chinese] | |
| 韩宁宁, 王训遒, 陈琦, 等. 植物纤维改性方法及其增强复合材料研究进展. 化工新型材料, 2020, 48 (3): 9- 13. | |
| Han N N , Wang X Q , Chen Q , et al. Research progress in modification of plant fiber and its application as reinforcing material composite. New Chemical Materials, 2020, 48 (3): 9- 13. | |
| 韩笑, 侯锋辉, 王希杰, 等. 国内外预浸料应用市场概述. 玻璃纤维, 2018, 284 (6): 10- 15. | |
| Han X , Hou F H , Wang X J , et al. Application market of prepregs at home and abroad. Fibre Glass, 2018, 284 (6): 10- 15. | |
| 郝燕飞. 2015. 用于汽车内饰件的汉麻纤维复合材料的成型工艺与性能的研究. 长春: 吉林大学硕士学位论文. | |
| Hao Y F. 2015. Research on the molding process and properties of hemp fiber reinforced composites used in automobile inner parts. Changchun: MS thesis of Jilin University. [in Chinese] | |
| 赖文, 刘伟, 赵勇, 等. 植物纤维汽车零部件的成型技术研究进展. 上海塑料, 2019, 185 (1): 12- 15. | |
| Lai W , Liu W , Zhao Y , et al. Research progress on molding technologies of plant fiber composite materials for automobile. Shanghai Plastics, 2019, 185 (1): 12- 15. | |
| 李龙, 王善元. 连续纤维增强热塑性复合材料预浸料的加工方法. 纤维复合材料, 1996, 21 (1): 21- 22. | |
| Li L , Wang S Y . The processing method of continuous fiber reinforced thermoplastic composite prepreg. Fiber Composites, 1996, 21 (1): 21- 22. | |
|  
											  李三平.  连续碳纤维增强热塑性复合材料的性能优势及应用举例. 中国新技术新产品, 2019, (10): 64- 65. 
											 												 doi: 10.3969/j.issn.1673-9957.2019.10.037  | 
										|
|  
											   Li S P .  Performance advantages and application examples of continuous carbon fiber reinforced thermoplastic composites. China New Technologies and Products, 2019, (10): 64- 65. 
											 												 doi: 10.3969/j.issn.1673-9957.2019.10.037  | 
										|
| 李学宽, 肇研, 王凯, 等. 热熔法制备连续纤维增强热塑性预浸料的浸渍模型和研究进展. 航空制造技术, 2018, 61 (14): 74- 78. | |
| Li X K , Zhao Y , Wang K , et al. Impregnation model and research progress of continuous fiber reinforced thermoplastic prepregs prepared via hot melting method. Aeronautical Manufacturing Technology, 2018, 61 (14): 74- 78. | |
| 李晔, 石海鑫, 李菁华. 连续纤维增强热塑性复合材料在汽车上的应用研究. 汽车工艺与材料, 2019, (12): 1- 7. | |
| Li Y , Shi H X , Li J H . Application in automotive of continuous fiber reinforced thermoplastic composites. Automobile Technology & Material, 2019, (12): 1- 7. | |
| 刘常衡, 朱凯丽, 谭洪生, 等. 连续亚麻纤维增强聚乳酸预浸带的制备及性能. 高分子材料科学与工程, 2020, 36 (2): 53- 59. | |
| Liu C H , Zhu K L , Tan H S , et al. Fabrication of properties of continuous flax-reinforced polylactic acid prepreg tapes. Polymer Materials Science and Engineering, 2020, 36 (2): 53- 59. | |
| 龙洪生, 薛平, 丁筠, 等. 熔融浸渍法制备HDPE/黄麻纤维复合材料工艺及性能研究. 中国塑料, 2015, (6): 30- 33. | |
| Long H S , Xue P , Ding Y , et al. Study on processing conditions and properties of long jute fibers reinforced high density polyethylene composites prepared by melt impregnation process. China Plastics, 2015, (6): 30- 33. | |
|  
											  裴云梦, 巫蔡泉, 吕章林, 等.  挤出-滚压预混技术制备连续纤维增强复合材料. 塑料工业, 2018, 46 (12): 70- 73, 78. 
											 												 doi: 10.3969/j.issn.1005-5770.2018.12.016  | 
										|
|  
											   Pei Y M ,  Wu C Q ,  Lü Z L , et al.  Preparation continuous fiber reinforced composites by extrusion-rolling premixed technology. China Plastics Industry, 2018, 46 (12): 70- 73, 78. 
											 												 doi: 10.3969/j.issn.1005-5770.2018.12.016  | 
										|
|  
											  宋康玲, 吴正畦, 宋雅路.  麻纤维增强复合材料及发展. 成都纺织高等专科学校学报, 2008, 25 (4): 23- 25. 
											 												 doi: 10.3969/j.issn.1008-5580.2008.04.007  | 
										|
|  
											   Song K L ,  Wu Z Q ,  Song Y L .  Bast fibre reinforced composites and their development. Journal of Chengdu Textile College, 2008, 25 (4): 23- 25. 
											 												 doi: 10.3969/j.issn.1008-5580.2008.04.007  | 
										|
|  
											  孙伟.  薄壁化注塑技术在汽车零件上的应用. 时代汽车, 2020, (11): 139- 140. 
											 												 doi: 10.3969/j.issn.1672-9668.2020.11.062  | 
										|
|  
											   Sun W .  Application of thin-walled injection molding technology in automotive parts. Auto Time, 2020, (11): 139- 140. 
											 												 doi: 10.3969/j.issn.1672-9668.2020.11.062  | 
										|
| 孙银宝, 李宏福, 张博明. 连续纤维增强热塑性复合材料研发与应用进展. 航空科学技术, 2016, 27 (5): 1- 7. | |
| Sun Y B , Li H F , Zhang B M . Progress in research and application of continuous fiber reinforced thermoplastic composite. Aeronautical Science & Technology, 2016, 27 (5): 1- 7. | |
|  
											  谭洪生, 宋鹏飞, 于婷婷.  法国JEC国际复材展热塑性预浸料及构件观感. 工程塑料应用, 2018, 46 (10): 141- 146. 
											 												 doi: 10.3969/j.issn.1001-3539.2018.10.028  | 
										|
|  
											   Tan H S ,  Song P F ,  Yu T T .  Impressions on thermoplastic prepreg and components in 2018 France JEC international composites. Engineering Plastics Application, 2018, 46 (10): 141- 146. 
											 												 doi: 10.3969/j.issn.1001-3539.2018.10.028  | 
										|
| 王云飞, 邹淼, 唐启恒, 等. 竹/木纤维配比对竹/木/聚丙烯纤维复合材料性能的影响. 木材工业, 2018, 32 (4): 5- 8. | |
| Wang Y F , Zou M , Tang Q H , et al. Effect of mass ration of bamboo/wood fiber on properties of bamboo/wood/polypropylene composites. China Wood Industry, 2018, 32 (4): 5- 8. | |
| 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战. 复合材料学报, 2016, 33 (7): 1327- 1338. | |
| Xing L Y , Bao J W , Li S M , et al. Development status and facing challenges of advanced polymer matrix composites. Acta Materiae Compositae Sinica, 2016, 33 (7): 1327- 1338. | |
| 徐燕, 李炜. 国内外预浸料制备方法. 玻璃钢/复合材料, 2013, (9): 3- 7. | |
| Xu Y , Li W . Manufacturing methods of prepreg material. Fiber Reinforce Plastic/Composites, 2013, (9): 3- 7. | |
| 姚文斌, 俞伟鹏, 张蔚. 2011. 一种麻状竹纤维、可纺麻形竹纤维、竹纤维纱线的生产工艺. 中国, CN 102242403 A. | |
| Yao W B, Yu W P, Zhang W. 2011. A production process of hemp bamboo fiber, spinnable hemp bamboo fiber and bamboo fiber yarn. China, CN102242403 A. [in Chinese] | |
| 余剑英, 周祖福. 连续纤维增强热塑性复合材料的制备成型技术及其应用前景. 武汉工业大学学报, 1998, 20 (4): 22- 24. | |
| Yu J Y , Zhou Z F . Fabrication and forming of continuous fibre reinforced thermoplastic composites and its application prospects. Journal of Wuhan University of Technology, 1988, 20 (4): 22- 24. | |
| 喻云水, 李立君. 2013. 用于制作汽车内饰件的竹纤维复合基材及内饰件制造方法. 中国, CN 102896843 A. | |
| Yu Y S, Li L J. 2013. The bamboo fiber composite substrates and the manufacturing method for automobile interior parts. China, CN 102896843 A. [in Chinese] | |
|  
											  张璐, 黄故.  麻纤维增强热塑性复合材料及其开发应用. 玻璃钢/复合材料, 2010, (3): 81- 83. 
											 												 doi: 10.3969/j.issn.1003-0999.2010.03.021  | 
										|
|  
											   Zhang L ,  Huang G .  Development and application of linen fiber reinforced composites. Fiber Reinforce Plastic/Composites, 2010, (3): 81- 83. 
											 												 doi: 10.3969/j.issn.1003-0999.2010.03.021  | 
										|
| 张庆. 汽车用热塑性复合材料. 轻型汽车技术, 2014, (7): 57- 59. | |
| Zhang Q . Thermoplastic composites for automobiles. Light Vehicle Technology, 2014, (7): 57- 59. | |
| 钟国留, 刘伟, 王庆林. 薄壁化技术在汽车零件上的应用. 上海塑料, 2019, (30): 48- 51. | |
| Zhong G L , Liu W , Wang Q L . Application of thin-walled technology in automotive parts. Shanghai Plastics, 2019, (30): 48- 51. | |
| Bajwa D S , Bhattacharjee S . Current progress, trends and challenges in the application of biofiber composites by automotive industry. Journal of Natural Fibers, 2016, 13 (6): 660- 669. | |
|  
											   Balan A K ,  Parambil S M ,  Vakyath S .  Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites: effect of silane coupling agents on the mechanical and thermal properties of the composites. Journal of Materials Science, 2017, 52 (11): 6712- 6725. 
											 												 doi: 10.1007/s10853-017-0907-y  | 
										|
|  
											   Biagiotti J ,  Puglia D ,  Kenny J M .  A review on natural fibre-based composites-part I: structure, processing and properties of vegetable fibres. Journal of Natural Fibers, 2004, 1 (2): 37- 68. 
											 												 doi: 10.1300/J395v01n02_04  | 
										|
|  
											   Bussetta P ,  Correia N .  Numerical forming of continuous fibre reinforced composite material: a review. Composites Part A: Applied Science and Manufacturing, 2018, 113, 12- 31. 
											 												 doi: 10.1016/j.compositesa.2018.07.010  | 
										|
|  
											   Chabaud G ,  Castro M ,  Denoual C , et al.  Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications. Additive Manufacturing, 2019, 26, 94- 105. 
											 												 doi: 10.1016/j.addma.2019.01.005  | 
										|
|  
											   Coleg S ,  Sherman A M .  Light weight materials for automotive application. Materials Characterization, 1995, 35 (1): 3- 9. 
											 												 doi: 10.1016/1044-5803(95)00063-1  | 
										|
|  
											   David A S ,  John L S .  On the recyclability of a cyclic thermoplastic composite material. Composites, 1998, 29, 745- 752. 
											 												 doi: 10.1016/S1359-8368(98)00016-X  | 
										|
| Deng J C , Wei X , Zhou H Y , et al. Inspiration from table tennis racket: preparation of rubber-wood-bamboo laminated composite(RWBLC) and its response characteristics to cyclic perpendicular compressive load. Composite Structures, 2020, 241, 1- 12. | |
|  
											   Deng J C ,  Wang G .  Axial tensile properties and flexibility characteristics of elementary units from multidimensional bamboo-based composites: radial and tangential moso bamboo slivers. Holzforschung, 2018, 72 (9): 779- 787. 
											 												 doi: 10.1515/hf-2018-0017  | 
										|
|  
											   Donmez CA ,  Kalaycioglu H ,  Mengeloglu F .  Technological properties of thermoplastic composites filled with fire retardant and tea mill waste fiber. Journal of Composite Materials, 2016, 50 (12): 1627- 1634. 
											 												 doi: 10.1177/0021998315595113  | 
										|
|  
											   Dun M Y ,  Hao J X ,  Wang W H , et al.  Sisal fiber reinforced high density polyethylene pre-preg for potential application in filament winding. Composites Part B: Engineering, 2019, 159, 369- 377. 
											 												 doi: 10.1016/j.compositesb.2018.09.090  | 
										|
| Filgueira D , Holmen S , Melbø J K , et al. 3D printable filaments made of biobased polyethylene biocomposites. Polymers(Basel), 2018, 10, 314. | |
|  
											   Jiang B ,  Huang Y D .  Investigation of the impregnation degree of the prepreg by near infrared spectroscopy. Composites Part B: Engineering, 2011, 42 (4): 946- 948. 
											 												 doi: 10.1016/j.compositesb.2010.12.022  | 
										|
| Kim N K , Lin R J T , Bhattacharyya D . Extruded short wool fibre composites: Mechanical and fire retardant properties. Composites Part B: Engineering, 2014, 67 (67): 472- 480. | |
|  
											   Kumar N ,  Mireja S ,  Khandelwal V , et al.  Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: A strength analysis and morphological study. Composites Part B: Engineering, 2017, 109, 277- 285. 
											 												 doi: 10.1016/j.compositesb.2016.10.052  | 
										|
|  
											   Kwon Y J ,  Kim Y ,  Jeon H , et al.  Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites. Composites Part B: Engineering, 2017, 122, 23- 30. 
											 												 doi: 10.1016/j.compositesb.2017.04.005  | 
										|
|  
											   Le Duigou A ,  Barbé A ,  Guillou E , et al.  3D printing of continuous flax fibre reinforced biocomposites for structural applications. Materials and Design, 2019, 180, 107884. 
											 												 doi: 10.1016/j.matdes.2019.107884  | 
										|
|  
											   Le Duigou A ,  Castro M ,  Bevan R , et al.  3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Materials and Design, 2016, 96, 106- 114. 
											 												 doi: 10.1016/j.matdes.2016.02.018  | 
										|
| Li H , Englund K . Recycling of carbon fiber-reinforced thermoplastic composite wastes from the aerospace industry. Journal of Composite Materials, 2016, 51 (9): 1265- 1273. | |
|  
											   Matsuzaki R ,  Ueda M ,  Namiki M , et al.  Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Scientific Reports, 2016, 6, 23058. 
											 												 doi: 10.1038/srep23058  | 
										|
| Meng H , Lin Y , Yiu W M . Advances in processing of continuous fibre reinforced composites with thermoplastic matrix. Plastics, Rubber and Composites Processing and Applications, 1995, 23, 279- 293. | |
| Parandoush P , Tucker L , Zhou C , et al. Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites. Materials & Design, 2017, 131, 186- 195. | |
|  
											   Premkumar S ,  Thangamani K .  Study of woven and non-woven fabric on water retention property for effective curing of concrete. The Journal of the Textile Institute, 2017, 108 (6): 962- 970. 
											 												 doi: 10.1080/00405000.2016.1204975  | 
										|
|  
											   Rathy I ,  Kuki A ,  Borda J , et al.  Preparation and characterization of poly(vinyl chloride)-continuous carbon fiber composites. Journal of Applied Polymer Science, 2012, 124 (1): 190- 194. 
											 												 doi: 10.1002/app.33617  | 
										|
| Sala G , Cutolo D . Heated chamber winding of thermoplastic powder-impregnated composites: Part 1. Technology and basic thermochemical aspects. Composites Part A Applied Science & Manufacturing, 1996, 27 (5): 387- 392. | |
|  
											   Sathishkumar T P ,  Satheeshkumar S ,  Naveen J .  Glass fiber-reinforced polymer composites: a review. Journal of Reinforced Plastics Composites, 2014, 33 (13): 1258- 1275. 
											 												 doi: 10.1177/0731684414530790  | 
										|
|  
											   Savas L A ,  Tayfun U ,  Dogan M .  The use of polyethylene copolymers as compatibilizers in carbon fiber reinforced high density polyethylene composites. Composites Part B: Engineering, 2016, 99, 188- 195. 
											 												 doi: 10.1016/j.compositesb.2016.06.043  | 
										|
| Stavrov D , Bersee H E N . Resistance welding of thermoplastic composites-an overview. Composites Part A: Applied Science and Manufacturing, 2005, 36 (1): 39- 54. | |
| Tang H , Chen K F , Li X N , et al. Environment-friendly, flame retardant thermoplastic elastomer-magnesium hydroxide composites. Functional Materials Letters, 2017, 10 (4): 1750042. | |
| Vaidya U K , Chawla K K . Processing of fibre reinforced thermoplastic composites. Metallurgical Reviews, 2008, 53 (4): 185- 218. | |
| Venkatachalam N , Navaneethakrishnan P , Rajsekar R , et al. Effect of pretreatment methods on properties of natural fiber composites: a review. Polymers and Polymer Composites, 2016, 24 (7): 555- 566. | |
| Yao S S , Jin F L , Rhee K Y , et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: a review. Composites Part B: Engineering, 2018, 142, 241- 250. | |
| Yusoff R B , Takagi H , Nakagaito A N . Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial Crops & Products, 2016, 94, 562- 573. | |
| Zakriya M , Ramakrishnan G , Gobi N , et al. Jute-reinforced nonwoven composites as a thermal insulator and sound absorber: a review. Journal of Reinforced Plastics and Composites, 2017, 36 (3): 206- 213. | |
| Zhao Z K , Du S S , Li F , et al. Mechanical and tribological properties of short glass fiber and short carbon fiber reinforced polyethersulfone composites: a comparative study. Composites Communications, 2018, 8, 1- 6. | 
| [1] | 刘一楠, 郭文静. 天然植物纤维/结晶聚合物复合材料的结晶动力学研究现状与趋势[J]. 林业科学, 2013, 49(11): 158-163. | 
| [2] | 宋永明;王清文. 木塑复合材料流变行为研究进展[J]. 林业科学, 2012, 48(8): 143-149. | 
| [3] | 郭文静 王正 鲍甫成 常亮. 天然植物纤维/可生物降解塑料生物质复合材料研究现状与发展趋势 [J]. 林业科学, 2008, 44(1): 157-163. | 
| [4] | 景林 赵卫 黄祖泰. 基于磨石机械浆的植物纤维餐具热压成型原理研究[J]. 林业科学, 2003, 39(1): 140-144. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||