陈 斌, 鲜鹏杰, 乔 梁, 等. 2015. 昆虫钠离子通道基因突变及其与杀虫剂抗性关系的研究进展. 昆虫学报, 58(10):1116-1125. (Chen B, Xian P J, Qiao L, et al. 2015. Research progress in sodium channel gene mutations and their association with insecticide resistance of insects. Acta Entomologica Sinica, 58(10):1116-1125.[in Chinese]) 何龙喜, 吴小芹, 吉 静, 等. 2012. 不同松树感染松材线虫后NO和核酸酶变化与其抗病性的关系. 林业科学, 48(1):109-114. (He L X, Wu X Q, Ji J, et al. 2012. Role of nitric oxide and nucleases in different pine species inoculated with a nematode (Bursaphelenchus xylophilus) in their resistance to the infection. Scientia Silvae Sinicae, 48(1):109-114.[in Chinese]) 何龙喜, 吴小芹, 俞禄珍, 等. 2010. 不同抗性松树与松材线虫互作中H2O2及其氧化酶活性的差异. 南京林业大学学报:自然科学版, 34(6):13-17. (He L X, Wu X Q, Yu L Z, et al. 2010. The difference of H2O2 and oxidative enzyme in the interaction of different resistance pines and Bursaphelenchus xylophilus. Journal of Nanjing Forestry University Natural Science Edition, 34(6):13-17.[in Chinese]) 何龙喜, 吴小芹, 俞禄珍. 2011. 不同松树与松材线虫互作中超氧自由基差异与病变的关系.南京林业大学学报:自然科学版, 35(2):25-30. (He L X, Wu X Q, Yu L Z. 2011. The relationship between difference of superoxide anion and lesion in the interaction of different varieties of pines and Bursaphelenchus xylophilus. Journal of Nanjing Forestry University:Natural Science Edition, 35(2):25-30.[in Chinese]) 金 钢, 叶建仁. 2007. 不同致病力线虫接种黑松后黑松的组织病理学变化.南京林业大学学报:自然科学版, 31(4):115-120. (Jin G, Ye J R. 2007. Histopathological study on the nematode in seedling of Pinus thunbergii. Journal of Nanjing Forestry University:Natural Science Edition, 31(4):115-120.[in Chinese]) 刘 伟, 杨宝君. 1995. 松材线虫和拟松材线虫雄虫交合伞形状的比较. 林业科学研究, 8(2):223-225. (Liu W, Yang B J. 1995. Comparison on the shape of male spicules between Bursaphelenchus xylophilus and B. mucronatus. Forest Research, 8(2):223-225.[in Chinese]) 龙书生. 2011. 活性氧、一氧化氮、细胞质游离钙离子和G蛋白在小麦对条锈菌过敏性坏死反应中的作用.杨凌:西北农林科技大学博士学位论文, 3-18. (Long S S. 2011. Roles of ROS, NO, cytoplasm Ca2+ and G-protein in the HR process of wheat to stripe rust. Yangling:PhD thesis of Northwest A & F University, 3-18.[in Chinese]) 王爱国, 罗广华. 1990. 植物的超氧物自由基与羟胺反应的定量关系. 植物生理学通讯, (6):55-57. (Wang A G, Luo G H. 1990. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiology Communications, (6):55-57.[in Chinese]) 徐福元, 葛明宏, 汪企明, 等. 1998. 马尾松种源对松材线虫病的抗性. 南京林业大学学报:自然科学版, 22(2):29-33. (Xu F Y, Ge M H, Wang Q M, et al. 1998. Studies on the masson pine provenances resistance to pine wood nematode (PWN) disease in China. Journal of Nanjing Forestry University:Natural Science Edition, 22(2):29-33.[in Chinese]) 徐 亮. 2013. 马尾松响应松材线虫侵染的CaM和CaMBP钙信号转导特征. 北京:北京林业大学博士学位论文, 15-28. (Xu L. 2013. Calcium signal transduction characteristics of CaM and CaMBP in interactions of Pinus massoniana and Bursaphelenchus xylophilus. Beijing:PhD thesis of Beijing Forestry University, 15-28.[in Chinese]) 杨宝君, 刘 伟, 徐福元, 等. 1999. 松材线虫病树早期诊断的研究Ⅱ.松树品种、接种量及线虫来源对流胶法的影响. 林业科学研究, 12(3):251-255. (Yang B J, Liu W, Xu F Y, et al. 1999. Study on early diagnosis for pine wilt disease caused by Bursaphelenchus xylophilus Ⅱ. The eeffect of pine species, dose and nematode origin on oleoresin exudation method. Froest Research, 12(3):251-255.[in Chinese]) 杨宝君, 朱克恭, 周元生, 等. 1995. 中国松材线虫病的流行与治理. 北京:中国林业出版社, 89-103. (Yang B J, Zhu K G, Zhou Y S, et al. 1995. The epidemic and control of pine wilt disease in China. Beijing:China Forestry Publishing House, 89-103.[in Chinese]) 俞禄珍, 吴小芹, 叶建仁, 等. 2013. H2O2在黑松-松材线虫早期互作应答中的调控作用. 中国科学:生命科学, 43(4):351-360. (Yu L Z, Wu X Q, Ye J R, et al. 2013. The role of hydrogen peroxide during the early interactions between Pinus thunbergii and Bursaphelenchus xylophilus. Scientia Sinica Vitae, 43(4):351-360.[in Chinese]) 章 健, 徐六一, 高景斌, 等. 2012. 抗松材线虫病马尾松无性系种子园营建技术. 林业科技开发, 26(1):82-85. (Zhang J, Xu L Y, Gao J B, et al. 2012. Technique on the establishment of a clonal seed orchard in Pinus massoniana for resistance to Bursaphelenchus xylophilus. China Forestry Science and Technology, 26(1):82-85.[in Chinese]) Barceló A R, Gomez R L V. 1970. Reactive oxygen species in plant cell walls. Reactive Oxygen Species in Plant Signaling, 73-93. Beligni M V, Lamattina L. 1999. Is nitric oxide toxic or protective? Trend in Plant Science, 4:299-300. Camejo D, Martí M C, Jiménez A, et al. 2011. Effect of oligogalacturonides on root length, extracellular alkalinization and O2-· accumulation in alfalfa. Journal of Plant Physiology, 168(6):566-575. Clark G, Wu M, Wat N, et al. 2010. Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species. Plant Mol Biol, 74(4/5):423-435. Dai K, Yonemichi T, Inoue H, et al. 2014. Comparison of histological responses and tissue damage expansion between resistant and susceptible Pinus thunbergii, infected with pine wood nematode Bursaphelenchus xylophilus. Journal of Forest Research, 19(2):285-294. Durner J, Wendehenne D, Klessig D F. 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc Natl Acad Sci USA, 95(17):10328-10333. Foyer C H, Noctor G. 2005. Oxidant and antioxidant signalling in plants:a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ, 28:1056-1071. Garcia B A, Lamotte O, Vandelle E, et al. 2006. Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions, 19(7):711-724. Gouvea C M C P, Souza J F, Magelhaes M I S. 1997. NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul, 21(3):183-187. Hossain M A, Ye W, Munemasa S, et al. 2014. Cyclic adenosine 5'-diphosphoribose (cADPR) cyclic guanosine 3',5'-monophosphate positively functionin Ca2+ elevation in methyl jasmonate-induced stomatal closure,cADPR is required for methyl jasmonate-induced ROS accumulation NO production in guard cells. Plant Biol, 16(6):1140-1144. Lamb C, Dixon R A. 1997. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol and Plant Mol Biol, 48:251-275. Miller B, Madilao L L, Ralph S, et al. 2005. Insect-induced conifer defense:white pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcript in Sitka spruce. Plant Physiol, 137(1):369-382. Neill S J, Desikan R, Clarke A, et al. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot, 53(372):1237-1247. Pereira C S, Ribeiro J M L, Vatulescu A D, et al. 2011. Extensin network formation in Vitis vinifera callus cells in an essential and causal event in rapid H2O2-induced reduction in primary cell wall hydration. BMC Plant Biol, 11(1):106. Tada Y, Mori T, Shinogi T, et al. 2004. Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat. Mol Plant Microbe Interact, 17(3):245-253. Vicente C S L, Nascimento F, Espada M, et al. 2012. Characterization of bacteria associated with pinewood nematode Bursaphelenchus xylophilus. Plos One, 7(10):e46661. Vivancos P D, Dong Y, Ziegler K, et al. 2010. Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant Journal, 64(5):825-838. Wang Z, Wang C Y, Fang Z M, et al. 2010. Advances in research of pathogenic mechanism of pine wilt disease. Afr J Microbiol Res, 4(6):437-442. Zhang X, Zhu Z, An F, et al. 2014. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell, 26(3):1105-1117. |