|
丁永全, 舒立福, 吴 松, 等. 塞罕坝林场不同林型地表枯落物特性及对应火险特征研究. 西南林业大学学报, 2021, 41 (4): 111- 118.
|
|
Ding Y Q, Shu L F, Wu S, et al. Characteristics of litter and corresponding fire risk of different forest types in Saihanba Forestry Center. Journal of Southwest Forestry University, 2021, 41 (4): 111- 118.
|
|
李笑笑, 赵凤君, 舒立福, 等. 2002—2023年中国森林火灾火源特征分析. 陆地生态系统与保护学报, 2024, 4 (6): 47- 55.
|
|
Li X X, Zhao F J, Fu L F, et al. Analysis of ignition sources characteristics of forest fire in China from 2002 to 2023. Terrestrial Ecosystem and Conservation, 2024, 4 (6): 47- 55.
|
|
王小雪, 王 恒, 张俊飞, 等. 塞罕坝林区华北落叶松径向生长对气候变化的响应. 林业与生态科学, 2022, 37 (2): 192- 197.
|
|
Wang X X, Wang H, Zhang J F, et al. Response of the radial growth of Larix principis-rupprechtii to climate change in Saihanba Forestry Farm. Forestry and Ecological Science, 2022, 37 (2): 192- 197.
|
|
闫凯达, 赵凤君, 司莉青, 等. 林火阻隔带和阻隔体系研究进展. 林业科学, 2025, 61 (1): 197- 208.
|
|
Yan K D, Zhao F J, Si L Q, et al. Research progress on forest firebreaks and firebreak systems. Scientia Silvae Sinicae, 2025, 61 (1): 197- 208.
|
|
袁 业, 孙国龙, 苑美燕, 等. 2017. 塞罕坝植物物种丰富度海拔分布格局. 安徽农业大学学报, 44(3): 496–501.
|
|
Yuan Y, Song G L, Yuan M Y, 2017. Distributional patterns of plant species richness along an elevational gradient in Saihanba. Journal of Anhui Agricultural University, 44(3): 496–501. [in Chinese]
|
|
Andrews P L. Current status and future needs of the BehavePlus fire modeling system. International Journal of Wildland Fire, 2014, 23 (1): 21- 33.
doi: 10.1071/WF12167
|
|
Banerjee T. Impacts of forest thinning on wildland fire behavior. Forests, 2020, 11 (9): 918.
doi: 10.3390/f11090918
|
|
Benali A, Sá A C L, Pinho J, et al. 2021. Understanding the impact of different landscape-level fuel management strategies on wildfire hazard in central Portugal. Forests. 12(5): 522.
|
|
Carratt S A, Flayer C H, Kossack M E. Pesticides, wildfire suppression chemicals, and California wildfires: A human health perspective. Current Topics in Toxicology, 2017, 13, 1- 12.
|
|
Chen X, Wang M, Li B, et al. Effects of fuel removal on the flammability of surface fuels in Betula platyphylla in the wildland–urban interface. Fire, 2024, 7, 261.
doi: 10.3390/fire7070261
|
|
Cruz M G, Alexander M E, Fernandes P M. Evidence for lack of a fuel effect on forest and shrubland fire rates of spread under elevated fire danger conditions: implications for modelling and management. International Journal of Wildland Fire, 2022, 31 (5): 471- 479.
doi: 10.1071/WF21171
|
|
Davim D A, Rossa C G, Pereira J M, et al. Evaluating the effect of prescribed burning on the reduction of wildfire extent in Portugal. Forest Ecology and Management, 2022, 519, 120302.
doi: 10.1016/j.foreco.2022.120302
|
|
Gabriels D, Horn R, Villagra M M, et al. 2020. Methods for assessment of soil degradation. Boca Raton: CRC Press.
|
|
Huang H, Ooka R, Liu N A, et al. Experimental study of fire growth in a reduced-scale compartment under different approaching external wind conditions. Fire Safety Journal, 2009, 44 (3): 311- 321.
doi: 10.1016/j.firesaf.2008.07.005
|
|
Johnston J D, Olszewski J H, Miller B A, et al. Mechanical thinning without prescribed fire moderates wildfire behavior in an Eastern Oregon, USA ponderosa pine forest. Forest Ecology and Management, 2021, 501, 119674.
doi: 10.1016/j.foreco.2021.119674
|
|
Kane J M, Varner J M, Knapp E E. Novel fuelbed characteristics associated with mechanical mastication treatments in northern California and south-western Oregon, USA. International Journal of Wildland Fire, 2009, 18 (6): 686- 697.
doi: 10.1071/WF08072
|
|
Keeley J E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 2009, 18 (1): 116- 126.
doi: 10.1071/WF07049
|
|
Mansoor S, Farooq I, Kachroo M M. Elevation in wildfire frequencies with respect to the climate change. Journal of Environmental Management, 2022, 301, 113769.
doi: 10.1016/j.jenvman.2021.113769
|
|
North M, Brough A, Long J, et al. Constraints on mechanized treatment significantly limit mechanical fuels reduction extent in the Sierra Nevada. Journal of Forestry, 2015, 113 (1): 40- 48.
doi: 10.5849/jof.14-058
|
|
Ritter S M, Hoffman C M, Battaglia M A, et al. Vertical and horizontal crown fuel continuity influences group-scale ignition and fuel consumption. Fire, 2023, 6 (8): 321.
doi: 10.3390/fire6080321
|
|
Rose M T, Cavagnaro T R, Scanlan C A, et al. Impact of herbicides on soil biology and function. Advances in Agronomy, 2016, 136, 133- 220.
|
|
Santín C, Doerr S H. Fire effects on soils: the human dimension. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371 (1696): 20150171.
doi: 10.1098/rstb.2015.0171
|
|
Slade E M, Mann D J, Lewis O T. Biodiversity and ecosystem function of tropical forest dung beetles under contrasting logging regimes. Biological Conservation, 2011, 144 (1): 166- 174.
doi: 10.1016/j.biocon.2010.08.011
|
|
Stephens S L, Jason J M. Experimental fuel treatment impacts on forest structure, potential fire behavior, and predicted tree mortality in a California mixed conifer forest. Forest Ecology and Management, 2005, 215 (1/3): 21- 36.
doi: 10.1016/j.foreco.2005.03.070
|
|
Stephens S L, McIver J D, Boerner R E, et al. The effects of forest fuel-reduction treatments in the United States. BioScience, 2012, 62 (6): 549- 560.
doi: 10.1525/bio.2012.62.6.6
|
|
Thomas P A, McAlpineR S. 2010. Fire in the forest. New York: Cambridge University Press.
|
|
Vaillant N M, Fites-Kaufman J, Reiner A L, et al. Effect of fuel treatments on fuels and potential fire behavior in california, USA, National Forests. Fire Ecology, 2009, 5 (2): 14- 29.
doi: 10.4996/fireecology.0502014
|
|
Wang H H, Finney M A., Song Z L, et al. 2021. Ecological techniques for wildfire mitigation: two distinct fuelbreak approaches and their fusion. Forest Ecology and Management, 495: 119376.
|
|
Zong X Z, TianX R, Wang X L. The role of fuel treatments in mitigating wildfire risk. Landscape and Urban Planning, 2024, 242, 104957.
doi: 10.1016/j.landurbplan.2023.104957
|