林业科学 ›› 2025, Vol. 61 ›› Issue (10): 60-73.doi: 10.11707/j.1001-7488.LYKX20250161
• 研究论文 • 上一篇
索奥丽1,2,陈锋1,2,3,龚俊伟1,2,程定野1,2,代世奥1,2,马成功4,刘晓东1,2,*(
)
收稿日期:2025-03-22
出版日期:2025-10-25
发布日期:2025-11-05
通讯作者:
刘晓东
E-mail:xd_liu@bjfu.edu.cn
基金资助:
Aoli Suo1,2,Feng Chen1,2,3,Junwei Gong1,2,Dingye Cheng1,2,Shi’ao Dai1,2,Chenggong Ma4,Xiaodong Liu1,2,*(
)
Received:2025-03-22
Online:2025-10-25
Published:2025-11-05
Contact:
Xiaodong Liu
E-mail:xd_liu@bjfu.edu.cn
摘要:
目的: 探究林间草地放牧对华北落叶松林和油松林地表可燃物特征、地表潜在火行为、土壤理化性质及林下植物多样性的影响,提出基于放牧的可持续火灾风险管理方案,为营林区火灾风险防控提供科学的实践路径。方法: 以华北落叶松和油松成熟林(林龄41~60年)为研究对象,在禁牧和中等强度放牧(3头·hm?2)地区建立样地,调查地表可燃物特征、土壤理化性质和林下植物多样性等,选择研究区2010—2023年防火期风速的第50百分位数(16 km?h?1)和第97百分位数(27 km?h?1)作为模拟风速,在BehavePlus 6.0软件中进行地表火蔓延速率、火线强度和火焰长度模拟,采用单因素方差分析评估放牧对土壤理化性质的长期影响,运用主成分分析法评估放牧对地表可燃物特征、地表潜在火行为及林下植物多样性的综合影响,探究放牧作为可燃物生态调控措施的可行性。结果: 1) 林间草地放牧可显著降低华北落叶松林和油松林草本层可燃物载量和地表可燃物床层厚度,降低幅度分别为72.09%~75.22%和79.07%~89.74%,同时可提高草本层物种多样性指数,其中Shannon-Wiener多样性指数提高12.42%~42.67%,Simpson多样性指数提高11.11%~33.33%;放牧使华北落叶松林土壤全磷含量减少21.74%,使油松林土壤全钾含量减少2.91%。2) 火行为模拟表明,放牧可在极端风速(27 km?h?1)条件下将地表火火线强度维持在500 kW?m?1以下,并将火焰长度由3~4 m降至1.5 m以下。3) 主成分分析结果表明,华北落叶松林放牧处理和油松林放牧处理的综合得分最高。华北落叶松林放牧处理在降低火灾风险与生态恢复力之间取得平衡;对油松林来说,在实施放牧管理的同时,探索补植高抗火性草本植物的可能性,可能有助于更好地平衡火险控制与林下植物多样性保护。结论: 中等强度放牧可作为基于自然的可持续火风险管理方案,但需注意长期放牧可能导致的磷、钾元素流失风险,需结合树种特性的生态反馈制定适宜的放牧策略。
中图分类号:
索奥丽,陈锋,龚俊伟,程定野,代世奥,马成功,刘晓东. 华北落叶松林和油松林地表可燃物特征、土壤理化性质及林下植物多样性对林间草地放牧的响应[J]. 林业科学, 2025, 61(10): 60-73.
Aoli Suo,Feng Chen,Junwei Gong,Dingye Cheng,Shi’ao Dai,Chenggong Ma,Xiaodong Liu. Response of Surface Fuel Characteristics, Soil Physicochemical Properties, and Understory Plant Diversity to Forest Grassland Grazing in Larix gmelinii var. principis-rupprechtii and Pinus tabuliformis Forests[J]. Scientia Silvae Sinicae, 2025, 61(10): 60-73.
表1
样地基本情况①"
| 林分类型 Forest stand type | 处理Treatment | 统计Statistic | 变量Variable | ||||||
| 海拔 Elevation/m | 坡度 Slope/(°) | 林分密度 Stand density/ (trees?hm?2) | 胸径 DBH/cm | 胸高断面积 Basal area/ (m2?hm?2) | 林分高度 Stand height/m | 郁闭度 Canopy density | |||
| 华北落叶松林 Larix gmelinii var. principis-rupprechtii forest | 禁牧Ungrazed 41.726 049°N 118.218 230°E | 平均值Mean | 1 242.7b | 13.67a | 1 085a | 19.13a | 127.82a | 14.0a | 0.50a |
| 标准Standard deviation | 0.8 | 0.58 | 36 | 0.45 | 7.58 | 0.4 | 0.05 | ||
| 放牧Grazed 41.725 535°N 118.218 918°E | 平均值Mean | 1 255.2a | 15.00a | 1 042a | 19.50a | 126.61a | 13.9a | 0.40a | |
| 标准Standard deviation | 3.2 | 1.00 | 63 | 0.36 | 4.52 | 0.2 | 0.05 | ||
| 油松林 Pinus tabuliformis forest | 禁牧Ungrazed 41.723 998°N 118.205 965°E | 平均值Mean | 1 349.5b | 12.00a | 648a | 29.90a | 191.54a | 14.7b | 0.42a |
| 标准Standard deviation | 18.6 | 2.65 | 25 | 0.53 | 14.81 | 0.4 | 0.03 | ||
| 放牧Grazed 41.723 742°N 118.204 803°E | 平均值Mean | 1 501.0a | 11.33a | 592a | 29.73a | 176.56a | 16.2a | 0.40a | |
| 标准Standard deviation | 4.8 | 2.31 | 38 | 0.12 | 9.62 | 0.1 | 0.00 | ||
表2
不同风速情景下地表潜在火行为变化①"
| 林分类型Forest stand type | 处理 Treatment | 统计Statistic | 第50百分位数 50th percentile (16 km?h?1) | 第97百分位数 97th percentile (27 km?h?1) | |||||
| 地表火蔓延速率Surface fire rate of spread/ (m?min?1) | 地表火火线强度Surface fireline intensity/ (kW?m?1) | 地表火火焰长度Surface fire flame length/m | 地表火蔓延速率Surface fire rate of spread/ (m?min?1) | 地表火火线强度Surface fireline intensity/ (kW?m?1) | 地表火火焰长度Surface fire flame length/m | ||||
| 华北落叶 松林 Larix gmelinii var. principis-rupprechtii forest | 禁牧 Ungrazed | 平均值Mean | 6.67a | 3 271.00a | 3.20a | 10.93a | 5 482.33a | 4.07a | |
| 标准差Standard deviation | 0.67 | 169.12 | 0.1 | 1.24 | 352.43 | 0.15 | |||
| 放牧 Grazed | 平均值Mean | 0.10b | 6.33b | 0.13b | 0.13b | 7.67b | 0.20b | ||
| 标准差Standard deviation | 0.00 | 4.93 | 0.06 | 0.06 | 6.43 | 0.10 | |||
| 油松林 Pinus tabuliformis forest | 禁牧 Ungrazed | 平均值Mean | 6.77a | 1 809.33a | 2.43a | 11.90a | 3 290.67a | 3.17a | |
| 标准差Standard deviation | 0.80 | 375.22 | 0.25 | 1.85 | 763.97 | 0.35 | |||
| 放牧 Grazed | 平均值Mean | 1.10b | 321.00b | 1.10b | 1.70b | 490.67b | 1.33b | ||
| 标准差Standard deviation | 0.20 | 99.78 | 0.17 | 0.30 | 145.55 | 0.21 | |||
表3
禁牧和放牧处理条件下土壤理化性质变化①"
| 土壤理化性质 Soil physicochemical properties | 华北落叶松林 Larix gmelinii var. principis-rupprechtii forest | 油松林 Pinus tabuliformis forest | |||
| 禁牧Ungrazed | 放牧Grazed | 禁牧Ungrazed | 放牧Grazed | ||
| pH | 6.40±0.04b | 6.71±0.23a | 6.24±0.05a | 6.28±0.08a | |
| 阳离子交换量Cation exchange capacity/ (cmol?kg?1) | 29.42±1.65a | 26.18±4.73a | 26.64±3.16a | 27.99±1.29a | |
| 有机质含量Soil organic matter content/ (g?kg?1) | 53.57±2.72a | 43.17±12.47a | 39.31±6.87a | 44.63±6.59a | |
| 全氮含量Total nitrogen content/ (g?kg?1) | 2.68±0.19a | 2.35±0.52a | 1.85±0.36a | 2.07±0.35a | |
| 全磷含量Total phosphorus content/ (g?kg?1) | 0.69±0.07a | 0.54±0.11b | 0.61±0.13a | 0.58±0.18a | |
| 全钾含量Total potassium content/ (g?kg?1) | 21.63±1.21a | 22.03±0.58a | 22.66±0.43a | 22.00±0.47b | |
| 交换性钙含量Exchangeable calcium content/ (mg?kg?1) | 6 476.56±368.57a | 6 885.79±691.86a | 7 195.30±448.70a | 7 452.02±643.33a | |
| 交换性镁含量Exchangeable magnesium content/ (mg?kg?1) | 445.99±111.38a | 535.85±76.22a | 557.64±96.32a | 520.58±141.58a | |
| 有效硫含量Available sulfur content/ (mg?kg?1) | 6.16±0.85a | 4.70±1.70a | 5.90±1.08a | 5.06±0.99a | |
| 有效铁含量Available iron content/ (mg?kg?1) | 137.78±21.30a | 124.37±47.58a | 156.94±26.45a | 172.43±25.98a | |
| 有效锰含量Available manganese content/ (mg?kg?1) | 48.18±9.81a | 43.24±18.86a | 25.39±3.11a | 30.84±10.28a | |
| 有效锌含量Available zinc content/ (mg?kg?1) | 2.49±1.01a | 1.80±1.73a | 0.79±0.13a | 0.55±0.26a | |
表4
基于地表可燃物特征、地表潜在火行为和林下植物多样性的主成分载荷"
| 项目Item | 指标 Variables | 主成分1 Principal component 1 (PC1) | 主成分2 Principal component 2 (PC2) | 主成分3 Principal component 3 (PC3) |
| 地表可燃物特征 Surface fuel characteristic | 1 h 时滞可燃物载量 1 h time-lag fuel load/ (t?hm?2) | ?0.917 | ?0.572 | 0.842 |
| 10 h 时滞可燃物载量 10 h time-lag fuel load/ (t?hm?2) | 0.525 | ?0.605 | 0.038 | |
| 100 h 时滞可燃物载量 100 h time-lag fuel load/ (t?hm?2) | 0.456 | 1.059 | ?1.063 | |
| 草本可燃物载量 Herb fuel load/ (t?hm?2) | 1.284 | 0.335 | ?0.367 | |
| 地表可燃物床层厚度 Surface fuel bed depth/m | 1.616 | ?0.483 | ?0.159 | |
| 地表潜在火行为 Potential surface fire behavior | 地表火蔓延速率 Surface fire rate of spread/ (m?min?1) | 1.601 | ?0.555 | ?0.134 |
| 地表火火线强度 Surface fireline intensity/ (kW?m?1) | 1.444 | ?0.915 | 0.005 | |
| 地表火火焰长度 Surface fire flame length/m | 1.538 | ?0.611 | ?0.237 | |
| 多样性指数 Biodiversity index | 草本层丰富度指数 Herb richness index | 1.091 | 0.681 | 0.636 |
| 草本层Shannon-Wiener多样性指数 Herb Shannon-Wiener index | 1.048 | 1.178 | 0.691 | |
| 草本层Simpson多样性指数 Herb Simpson index | 0.981 | 1.216 | 0.596 | |
| 灌木层Shannon-Wiener多样性指数 Shrub Shannon-Wiener index | ?0.614 | 0.585 | ?0.870 | |
| 特征值 Eigenvalues | 5.152 | 2.334 | 1.292 | |
| 方差贡献率 Proportion explained (%) | 42.92 | 19.45 | 10.76 | |
| 累计方差贡献率 Cumulative proportion (%) | 42.92 | 62.38 | 73.15 | |
表5
2种针叶林在禁牧和放牧处理条件下的综合得分及排名"
| 林分类型 Forest stand type | 处理 Treatment | 主成分1 Principal component 1 (PC1) | 主成分2 Principal component 2 (PC2) | 主成分3 Principal component 3 (PC3) | 综合得分 Comprehensive score | 排名 Rank |
| 华北落叶松林Larix gmelinii var. principis-rupprechtii forest | 放牧Grazed | 0.648 | 0.106 | ?0.369 | 3.109 | 1 |
| 油松林Pinus tabuliformis forest | 放牧Grazed | 0.281 | ?0.322 | 0.391 | 1.201 | 2 |
| 华北落叶松林Larix gmelinii var. principis-rupprechtii forest | 禁牧Ungrazed | ?0.380 | 0.613 | ?0.188 | ?0.771 | 3 |
| 油松林Pinus tabuliformis forest | 禁牧Ungrazed | ?0.549 | ?0.397 | 0.166 | ?3.541 | 4 |
| 鲍士旦. 2000. 土壤农化分析. 北京: 中国农业出版社. | |
| Bao S D. 2000. Soil agricultural chemistry analysis. Beijing: China Agriculture Press. [in Chinese] | |
| 陈思帆, 陈 锋, 索奥丽, 等. 不同烈度林火对油松林土壤微生物群落组成的影响. 生态学报, 2025, 45 (9): 1- 14. | |
| Chen S F, Chen F, Suo A L, et al. Investigation of soil microbial community composition in Pinus tabulaeformis forests after different fire severities. Acta Ecologica Sinica, 2025, 45 (9): 1- 14. | |
| 陈雅轩, 张彧璠, 王佳乐, 等. 不同林龄华北落叶松土壤酶活性和碳氮磷化学计量变化. 生态学报, 2025, 45 (1): 25- 41. | |
| Chen Y X, Zhang Y F, Wang J L, et al. Changes of soil enzyme activity and the stoichiometry of carbon, nitrogen, and phosphorus in Larix gmelinii var. principis-rupprechtii plantations at different ages. Acta Ecologica Sinica, 2025, 45 (1): 25- 41. | |
|
郭晋平, 丁颖秀, 张芸香. 关帝山华北落叶松林凋落物分解过程及其养分动态. 生态学报, 2009, 29 (10): 5684- 5695.
doi: 10.3321/j.issn:1000-0933.2009.10.060 |
|
|
Guo J P, Ding Y X, Zhang Y X, et al. Decomposition process and nutrient dynamic of litterfall in a Larix gmelinii var. principis-rupprechtii stand in Guandishan Mountains. Acta Ecologica Sinica, 2009, 29 (10): 5684- 5695.
doi: 10.3321/j.issn:1000-0933.2009.10.060 |
|
|
胡同欣, 宋浩然, 李 飞, 等. 不同火烧强度对兴安落叶松根系分解和土壤有机碳的影响. 东北林业大学学报, 2023, 51 (11): 115- 124.
doi: 10.3969/j.issn.1000-5382.2023.11.018 |
|
|
Hu T X, Song H R, Li F, et al. Effect of different burning intensities on decomposition of Larix gmelinii root system and its contribution to soil organic carbon. Journal of Northeast Forestry University, 2023, 51 (11): 115- 124.
doi: 10.3969/j.issn.1000-5382.2023.11.018 |
|
| 江康威, 张青青, 王亚菲, 等. 2024a. 天山北坡中段草地生态系统多功能性对放牧的响应. 生态学报, 44(8): 3440−3456. | |
| Jiang K W, Zhang Q Q, Wang Y F, et al. 2024a. Response of grassland ecosystem multifunctionality to grazing in the middle part of the northern slope, Tianshan Mountain. Acta Ecologica Sinica, 44(8): 3440−3456. [in Chinese] | |
| 江康威, 张青青, 王亚菲, 等. 2024b. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系. 植物生态学报, 48(6): 701−718. | |
| Jiang K W, Zhang Q Q, Wang Y F, et al. 2024b. Characteristics of plant functional groups and the relationships with soil environmental factors in middle part of northern slope of Tianshan Mountains under different grazing intensities. Chinese Journal of Plant Ecology, 48(6): 701−718. [in Chinese] | |
| 李树宝. 2023. 旺业甸华北落叶松人工林土壤与枯落物特征及保水保肥能力评价. 呼和浩特: 内蒙古农业大学. | |
| Li S B. 2023. Evaluation of soil and litter characteristics and water and fertilizer retention capacity of Larix gmelinii var. principis-rupprechtii plantation in Wangyedian. Hohhot: Inner Mongolia Agricultural University. [in Chinese] | |
|
李天琦, 曹继容, 柳小妮, 等. 温带草原土壤酶化学计量与限制性养分对放牧的响应. 植物生态学报, 2025, 49 (1): 1- 11.
doi: 10.17521/cjpe.2024.0433 |
|
|
Li T Q, Cao J R, Liu X N, et al. Response of soil enzyme activity to grazing and identification of soil limiting nutrients in a temperate grassland. Chinese Journal of Plant Ecology, 2025, 49 (1): 1- 11.
doi: 10.17521/cjpe.2024.0433 |
|
|
李毅夫, 孙 斌, 南志标, 等. 中国北方林间草地分类体系研究. 草业学报, 2025, 34 (3): 175- 188.
doi: 10.11686/cyxb2024197 |
|
|
Li Y F, Sun B, Nan Z B, et al. Classification system of inter-silva grasslands in northern China. Acta Prataculturae Sinica, 2025, 34 (3): 175- 188.
doi: 10.11686/cyxb2024197 |
|
| 陕莎莎, 张 鸾, 赵利华, 等. 晋西北丘陵风沙区人工针叶林枯落物–土壤碳氮磷对放牧干扰的响应. 应用与环境生物学报, 2024, 30 (2): 229- 237. | |
| Shan S S, Zhang L, Zhao L H, et al. Response of little-soil C, N, and P to grazing disturbance in coniferous plantations in sandy-hilly region of northwest Shanxi Province, China. Chinese Journal of Applied and Environmental Biology, 2024, 30 (2): 229- 237. | |
| 单延龙, 王明霞, 于 渤, 等. 呼中国家级自然保护区主要可燃物类型地下火燃烧特征. 北华大学学报(自然科学版), 2022, 23 (6): 815- 823. | |
| Shan Y L, Wang M X, Yu B, et al. Combustion characteristics of underground fires with main fuel types in Huzhong National Nature Reserve. Journal of Beihua University (Natural Science), 2022, 23 (6): 815- 823. | |
| 陶长森. 2019. 北京山区主要针叶林冠层可燃物特征及潜在火行为研究. 北京: 北京林业大学. | |
| Tao C S. 2019. Characteristics of canopy fuel and potential fire behavior in major coniferous forests in the mountainous area, Beijing. Beijing: Beijing Forestry University. [in Chinese] | |
|
吴春英, 张少华, 孟庆荔, 等. 开发利用林间、林下草地资源大力发展林区牧业经济. 吉林畜牧兽医, 2005, (8): 34- 35.
doi: 10.3969/j.issn.1672-2078.2005.08.015 |
|
|
Wu C Y, Zhang S H, Meng Q L, et al. Development and utilization of forest, understory grassland resources to develop forest animal husbandry economy. Jilin Animal Husbandry and Veterinary Medicine, 2005, (8): 34- 35.
doi: 10.3969/j.issn.1672-2078.2005.08.015 |
|
| 王 菊, 许明祥, 孙 会, 等. 2023. 放牧对陕北黄土丘陵区刺槐林群落特征的影响. 草地学报, 31(6): 1826−1833. | |
| Wang J, Xu M X, Sun H, et al. 2023. Effects of grazing on community characteristics of Robinia pseudoacacia forest in the Hilly Loess Plateau Region of northern Shaanxi Province. Acta Prataculturae Sinica, 31(6): 1826−1833. [in Chinese] | |
|
王志波, 白高娃, 李银祥, 等. 华北落叶松人工林凋落物组成及动态研究. 内蒙古林业科技, 2021, 47 (2): 15- 19.
doi: 10.3969/j.issn.1007-4066.2021.02.004 |
|
|
Wang Z B, Bai G W, Li Y X, et al. Composition of litterfall and dynamic study in Larix gmelinii var. principis-rupprechtii plantation. Inner Mongolia Forestry Science and Technology, 2021, 47 (2): 15- 19.
doi: 10.3969/j.issn.1007-4066.2021.02.004 |
|
|
肖 军, 雷 蕾, 李肇晨, 等. 不同经营方式对油松成熟人工林生长和植物多样性的影响. 北京林业大学学报, 2023, 45 (12): 1- 10.
doi: 10.12171/j.1000-1522.20220302 |
|
|
Xiao J, Lei L, Li Z C, et al. Effects of different management methods on growth and plant diversity in mature Pinus tabuliformis plantations. Journal of Beijing Forestry University, 2023, 45 (12): 1- 10.
doi: 10.12171/j.1000-1522.20220302 |
|
| 徐国巧, 李 校, 万一峰, 等. 围栏封育对华北落叶松人工林草本层和土壤的短期影响. 林业资源管理, 2021, (2): 158- 163. | |
| Xu G Q, Li X, Wan Y F, et al. Short-term impact of enclosure on grass layer and soil in Larix gmelinii var. principis-rupprechtii plantations. Forest Resources Management, 2021, (2): 158- 163. | |
| 严积有, 徐凯然, 申新山. 放牧干扰对人工林土壤物理性状的影响. 水土保持通报, 2008, 28 (6): 138- 141. | |
| Yan J Y, Xu K R, Shen X S. Influences of grazing disturbance on soil physical properties in planted forest. Bulletin of Soil and Water Conservation, 2008, 28 (6): 138- 141. | |
|
尹赛男, 单延龙, 陈 响, 等. 不同恢复程度的长白山风灾区地下火阴燃特征和发生概率模拟. 林业科学, 2023, 59 (9): 117- 126.
doi: 10.11707/j.1001-7488.LYKX20220648 |
|
|
Yin S N, Shan Y L, Chen X, et al. Simulation of the smoldering characteristics and occurrence probability of sub-surface fires in the typhoon-caused disaster areas of Changbaishan Mountain with different recovery degrees. Scientia Silvae Sinicae, 2023, 59 (9): 117- 126.
doi: 10.11707/j.1001-7488.LYKX20220648 |
|
|
周运红, 李建亮, 王利东, 等. 间伐对华北落叶松林凋落物分解的影响. 北京林业大学学报, 2021, 43 (12): 29- 37.
doi: 10.12171/j.1000-1522.20210114 |
|
|
Zhou Y H, Li J L, Wang L D, et al. Effects of thinning on litter decomposition of Larix gmelinii var. principis-rupprechtii plantation. Journal of Beijing Forestry University, 2021, 43 (12): 29- 37.
doi: 10.12171/j.1000-1522.20210114 |
|
|
Abatzoglou J T, McEvoy D J, Nauslar N J, et al. Downscaled subseasonal fire danger forecast skill across the contiguous United States. Atmospheric Science Letters, 2023, 24 (8): e1165.
doi: 10.1002/asl.1165 |
|
|
Alexander M E, Cruz M J. Modelling the effects of surface and crown fire behaviour on serotinous cone opening in jack pine and lodgepole pine forests. International Journal of Wildland Fire, 2012, 21 (6): 709- 721.
doi: 10.1071/WF11153 |
|
| Alexander M E, Lanoville R A. 1989. Predicting fire behavior in the black spruce-lichen woodland fuel type of western and northern Canada-poster. Forestry Canada, Northern Forestry Center, & Government of the Northwest Territories, Department of Renewable Resources, Territorial Forest Fire Center, 16. | |
|
Arellano-Pérez S, Castedo-Dorado F, Álvarez-González J G, et al. Mid-term effects of a thin-only treatment on fuel complex, potential fire behaviour and severity and post-fire soil erosion protection in fast-growing pine plantations. Forest Ecology and Management, 2020, 460, 117895.
doi: 10.1016/j.foreco.2020.117895 |
|
| Bailey D W, Mosley J C, Estell R E, et al. Synthesis paper: targeted livestock grazing: prescription for healthy rangelands. Rangeland Ecology & Management, 2019, 72 (6): 865- 877. | |
|
Batcheler M, Smith M M, Swanson M E, et al. Assessing silvopasture management as a strategy to reduce fuel loads and mitigate wildfire risk. Scientific Reports, 2024, 14 (1): 5954.
doi: 10.1038/s41598-024-56104-3 |
|
|
Brockerhoff E G, Jactel H, Parrotta J A, et al. Plantation forests and biodiversity: oxymoron or opportunity. Biodiversity and Conservation, 2008, 17 (5): 925- 951.
doi: 10.1007/s10531-008-9380-x |
|
|
Brodie E G, Knapp E E, Brooks W R, et al. Forest thinning and prescribed burning treatments reduce wildfire severity and buffer the impacts of severe fire weather. Fire Ecology, 2024, 20 (1): 17.
doi: 10.1186/s42408-023-00241-z |
|
| Bruegger R A, Varelas L A, Howery L D, et al. Targeted grazing in southern Arizona: using cattle to reduce fine fuel loads. Rangeland Ecology & Management, 2016, 69 (1): 43- 51. | |
| Chen G, Qiu M, Wang P, et al. Continuous wildfires threaten public and ecosystem health under climate change across continents. Frontiers of Environmental Science & Engineering, 2024, 18 (10): 130. | |
|
Connell J H. Diversity in tropical rain forests and coral reefs. Science, 1978, 199 (4335): 1302- 1310.
doi: 10.1126/science.199.4335.1302 |
|
|
Cruz M G, Alexander M E, Plucinski M P. The effect of silvicultural treatments on fire behaviour potential in radiata pine plantations of South Australia. Forest Ecology and Management, 2017, 397, 27- 38.
doi: 10.1016/j.foreco.2017.04.028 |
|
| Cui X L, Alam M A, Perry G L, et al. Green firebreaks as a management tool for wildfires: lessons from China. Journal of Environmental Management, 2019, 233, 329- 336. | |
|
Dara A, Baumann M, Hölzel N, et al. Post-Soviet land-use change affected fire regimes on the Eurasian steppes. Ecosystems, 2020, 23 (5): 943- 956.
doi: 10.1007/s10021-019-00447-w |
|
| Davies K W, Bates J D, Boyd C S. Response of planted sagebrush seedlings to cattle grazing applied to decrease fire probability. Rangeland Ecology & Management, 2020, 73 (5): 629- 635. | |
|
Davies K W, Boyd C S, Bates J D, et al. Dormant season grazing may decrease wildfire probability by increasing fuel moisture and reducing fuel amount and continuity. International Journal of Wildland Fire, 2015, 24 (6): 849- 856.
doi: 10.1071/WF14209 |
|
|
Davies K W, Boyd C S, Bates J D, et al. Winter grazing can reduce wildfire size, intensity and behaviour in a shrub-grassland. International Journal of Wildland Fire, 2016, 25 (2): 191- 199.
doi: 10.1071/WF15055 |
|
|
Davies K W, Wollstein K, Dragt B, et al. Grazing management to reduce wildfire risk in invasive annual grass prone sagebrush communities. Rangelands, 2022, 44 (3): 194- 199.
doi: 10.1016/j.rala.2022.02.001 |
|
| Donaldson J, Archibald S, Govender N, et al. Ecological engineering through fire-herbivory feedbacks drives the formation of savanna grazing lawns. Journal of Applied Ecology, 2017, 55 (1): 225- 235. | |
|
Duan R, Wang C, Wang X, et al. Differences in plant species diversity between conifer (Pinus tabulaeformis) plantations and natural forests in middle of the Loess plateau. Russian Journal of Ecology, 2009, 40 (7): 501- 509.
doi: 10.1134/S106741360907008X |
|
|
Evans E W, Ellsworth L M, Litton C M. Impact of grazing on fine fuels and potential wildfire behaviour in a non-native tropical grassland. Pacific Conservation Biology, 2015, 21 (2): 126- 132.
doi: 10.1071/PC14910 |
|
|
Fang W, Cai Q, Zhao Q, et al. Species richness patterns and the determinants of larch forests in China. Plant Diversity, 2022, 44 (5): 436- 444.
doi: 10.1016/j.pld.2022.05.002 |
|
|
Gass T M, Binkley D. Soil nutrient losses in an altered ecosystem are associated with native ungulate grazing. Journal of Applied Ecology, 2011, 48 (4): 952- 960.
doi: 10.1111/j.1365-2664.2011.01996.x |
|
|
Głowacz K, Niżnikowski R. The effect of animal grazing on vegetation and soil and element cycling in nature. Environmental Science and Pollution Research, 2018, 25 (4): 3565- 3570.
doi: 10.1007/s11356-017-0740-5 |
|
|
Gong D, Sun L, Hu T. Characterizing the occurrence of wildland-urban interface fires and their important factors in China. Ecological Indicators, 2024, 165, 112179.
doi: 10.1016/j.ecolind.2024.112179 |
|
| Hakkenberg C R, Peet R K, Wentworth T R, et al. Tree canopy cover constrains the fertility-diversity relationship in plant communities of the southeastern United States. Ecology (Durham), 2020, 101 (10): 1- 13. | |
|
Hao Y, He Z. Effects of grazing patterns on grassland biomass and soil environments in China: a meta-analysis. Plos One, 2019, 14 (4): e0215223.
doi: 10.1371/journal.pone.0215223 |
|
|
Herrero-Jáuregui C, Oesterheld M. Effects of grazing intensity on plant richness and diversity: a meta-analysis. Oikos, 2018, 127 (6): 757- 766.
doi: 10.1111/oik.04893 |
|
| Hevia A, Crabiffosse A, Álvarez-González J G, et al. Assessing the effect of pruning and thinning on crown fire hazard in young Atlantic maritime pine forests. Journal of Environmental Management, 2018, 205, 9- 17. | |
| Hodges S C. 2010. Soil fertility basics. Soil science extension. Raleigh, NC: North Carolina State University. | |
|
Hong R, Zhu X, Ma C, et al. The effect of prescribed burning on the growth and regeneration of Pinus yunnanensis. Forest Ecology and Management, 2025, 578, 122460.
doi: 10.1016/j.foreco.2024.122460 |
|
|
Hu H, Hu T, Sun L. Spatial heterogeneity of soil respiration in a Larix gmelinii forest and the response to prescribed fire in the Greater Xing’an Mountains, China. Journal of Forestry Research, 2016, 27 (5): 1153- 1162.
doi: 10.1007/s11676-016-0215-4 |
|
|
Jiménez E, Vega-Nieva D, Rey E, et al. Midterm fuel structure recovery and potential fire behaviour in a Pinus pinaster Ait forest in northern central Spain after thinning and mastication. European Journal of Forest Research, 2016, 135 (4): 675- 686.
doi: 10.1007/s10342-016-0963-x |
|
|
Karp A T, Koerner S E, Hempson G P, et al. Grazing herbivores reduce herbaceous biomass and fire activity across African savannas. Ecology Letters, 2024, 27 (6): e14450.
doi: 10.1111/ele.14450 |
|
|
Kladivová A, Münzbergová Z. Interacting effects of grazing and habitat conditions on seedling recruitment and establishment. Journal of Vegetation Science, 2016, 27 (4): 834- 843.
doi: 10.1111/jvs.12395 |
|
|
Libonati R. Megafires are here to stay-and blaming only climate change won’t help. Nature, 2024,
doi: 10.1038/d41586-024-00641-4 |
|
|
Liu C, Li W, Xu J, et al. Response of soil nutrients and stoichiometry to grazing management in alpine grassland on the Qinghai-Tibet Plateau. Soil and Tillage Research, 2021, 206, 104822.
doi: 10.1016/j.still.2020.104822 |
|
|
Mancilla-Leytón J M, Hernando C, Cambrollé J, et al. Can shrub flammability be affected by goat grazing. Flammability Parameters of Mediterranean Shrub Species under Grazing. Sustainability, 2021, 13 (3): 1555.
doi: 10.3390/su13031555 |
|
|
Marcora P I, Renison D, País-Bosch A I, et al. The effect of altitude and grazing on seedling establishment of woody species in central Argentina. Forest Ecology and Management, 2013, 291, 300- 307.
doi: 10.1016/j.foreco.2012.11.030 |
|
|
Masters D G, Judson G J, White C L, et al. Current issues in trace element nutrition of grazing livestock in Australia and New Zealand. Australian Journal of Agricultural Research, 1999, 50 (8): 1341- 1364.
doi: 10.1071/AR99035 |
|
| Orr D A, Bates J D, Davies K W. Grazing intensity effects on fire ignition risk and spread in sagebrush steppe. Rangeland Ecology & Management, 2023, 89, 51- 60. | |
|
Parissi Z M, Papaioannou A, Abraham E M, et al. Influence of combined grazing by wild boar and small ruminant on soil and plant nutrient contents in a coppice oak forest. Journal of Plant Nutrition and Soil Science, 2014, 177 (5): 783- 791.
doi: 10.1002/jpln.201300550 |
|
|
Pausas J G, Ribeiro E. Fire and plant diversity at the global scale. Global Ecology and Biogeography, 2017, 26 (8): 889- 897.
doi: 10.1111/geb.12596 |
|
|
Piqué M, Domènech R. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain. Science of the Total Environment, 2018, 618, 1539- 1546.
doi: 10.1016/j.scitotenv.2017.09.316 |
|
|
Piqué M, González-Olabarria J R, Busquets E. Dynamic evaluation of early silvicultural treatments for wildfire prevention. Forests, 2022, 13 (6): 858.
doi: 10.3390/f13060858 |
|
| Prichard S J, Sandberg D V, Ottmar R D, et al. 2013. Fuel characteristic classification system version 3.0: technical documentation (PNW-GTR-887). Portland: Department of Agriculture, Forest Service, Pacific Northwest Research Station, 79. | |
|
Radcliffe D C, Bakker J D, Churchill D J, et al. How are long-term stand structure, fuel profiles, and potential fire behavior affected by fuel treatment type and intensity in Interior Pacific Northwest forests. Forest Ecology and Management, 2024, 553, 121594.
doi: 10.1016/j.foreco.2023.121594 |
|
|
Ratcliff F, Rao D R, Barry S J, et al. Cattle grazing reduces fuel and leads to more manageable fire behavior. California Agriculture, 2022, 76 (2/3): 60- 69.
doi: 10.3733/ca.2022a0011 |
|
|
Rodrigues M, Alcasena F, Vega-García C. Modeling initial attack success of wildfire suppression in Catalonia, Spain. Science of the Total Environment, 2019, 666, 915- 927.
doi: 10.1016/j.scitotenv.2019.02.323 |
|
|
Rouet-Leduc J, Pe'er G, Moreira F, et al. Effects of large herbivores on fire regimes and wildfire mitigation. Journal of Applied Ecology, 2021, 58 (12): 2690- 2702.
doi: 10.1111/1365-2664.13972 |
|
|
Salis M, Laconi M, Ager A A, et al. Evaluating alternative fuel treatment strategies to reduce wildfire losses in a Mediterranean area. Forest Ecology and Management, 2016, 368, 207- 221.
doi: 10.1016/j.foreco.2016.03.009 |
|
| Schachtschneider C L, Strand E K, Launchbaugh K L, et al. Targeted cattle grazing to alter fuels and reduce fire behavior metrics in shrub-grasslands. Rangeland Ecology & Management, 2024, 96, 105- 116. | |
| Scott A C, Bowman D M J S, Bond W J, et al. 2014. Fire on eearth: an introduction. Chichester: Geological Journal. | |
|
Siegel K J, Macaulay L, Shapero M, et al. Impacts of livestock grazing on the probability of burning in wildfires vary by region and vegetation type in California. Journal of Environmental Management, 2022, 322, 116092.
doi: 10.1016/j.jenvman.2022.116092 |
|
| Starrs G I, Siegel K J, Larson S, et al. 2024. Quantifying large-scale impacts of cattle grazing on annual burn probability in Napa and Sonoma Counties, California. Ecology and Society, doi: 10.5751/ES-15080-290310. | |
|
Tang S, Wang K, Xiang Y, et al. Heavy grazing reduces grassland soil greenhouse gas fluxes: a global meta-analysis. Science of the Total Environment, 2019, 654, 1218- 1224.
doi: 10.1016/j.scitotenv.2018.11.082 |
|
|
Tessema Z K, de Boer W F, Baars R M T, et al. Changes in soil nutrients, vegetation structure and herbaceous biomass in response to grazing in a semi-arid savanna of Ethiopia. Journal of Arid Environments, 2011, 75 (7): 662- 670.
doi: 10.1016/j.jaridenv.2011.02.004 |
|
| Thomas T W, Davies K W. Grazing effects on fuels vary by community state in Wyoming big sagebrush steppe. Rangeland Ecology & Management, 2023, 89, 42- 50. | |
|
Tiessen H, Cuevas E, Chacon P. The role of soil organic matter in sustaining soil fertility. Nature, 1994, 371 (6500): 783- 785.
doi: 10.1038/371783a0 |
|
|
Török P, Penksza K, Tóth E, et al. Vegetation type and grazing intensity jointly shape grazing effects on grassland biodiversity. Ecology and Evolution, 2018, 8 (20): 10326- 10335.
doi: 10.1002/ece3.4508 |
|
| Tóth E, Deák B, Valkó O, et al. Livestock type is more crucial than grazing intensity: traditional cattle and sheep grazing in short-grass steppes. Land Degradation & Development, 2018, 29 (2): 231- 239. | |
|
Travers S K, Eldridge D J, Koen T B, et al. Livestock and kangaroo grazing have little effect on biomass and fuel hazard in semi-arid woodlands. Forest Ecology and Management, 2020, 467, 118165.
doi: 10.1016/j.foreco.2020.118165 |
|
|
Weston C J, Stefano J D, Hislop S, et al. Effect of recent fuel reduction treatments on wildfire severity in southeast Australian Eucalyptus sieberi forests. Forest Ecology and Management, 2022, 505, 119924.
doi: 10.1016/j.foreco.2021.119924 |
|
|
Williamson M A, Fleishman E, Mac Nally R C, et al. Fire, livestock grazing, topography, and precipitation affect occurrence and prevalence of cheatgrass (Bromus tectorum) in the central Great Basin, USA. Biological Invasions, 2020, 22 (2): 663- 680.
doi: 10.1007/s10530-019-02120-8 |
|
|
Zong X, Tian X, Wang X. An optimal firebreak design for the boreal forest of China. Science of the Total Environment, 2021, 781, 146822.
doi: 10.1016/j.scitotenv.2021.146822 |
| [1] | 宗学政,田晓瑞. 可燃物处理对大兴安岭地区主要林型火行为的影响[J]. 林业科学, 2021, 57(2): 139-149. |
| [2] | 冯琦雅, 陈超凡, 覃林, 何亚婷, 王鹏, 段艺璇, 王雅菲, 何友均. 不同经营模式对蒙古栎天然次生林林分结构和植物多样性的影响[J]. 林业科学, 2018, 54(1): 12-21. |
| [3] | 刘伟玮, 刘某承, 李文华, 曾凡顺, 曲艺. 落叶松-人参复合系统的植物多样性和碳储量特征[J]. 林业科学, 2016, 52(9): 124-132. |
| [4] | 陈文业, 赵明, 张继强, 袁海峰, 窦英杰, 朱丽, 陈旭. 甘肃敦煌西湖荒漠-湿地生态系统土壤水分含量对植被特征的影响[J]. 林业科学, 2015, 51(11): 8-16. |
| [5] | 梁星云;何友均;张谱;戎建涛;覃林;李智勇. 不同经营模式对丹清河林场天然次生林植物 群落结构及其多样性的影响[J]. 林业科学, 2013, 49(3): 93-102. |
| [6] | 潘声旺, 何茂萍, 杨丽娟, 方文. 先锋植物丰富度对公路边坡植物群落生长发育及护坡效益的影响[J]. 林业科学, 2013, 49(11): 24-31. |
| [7] | 张象君;王庆成;郝龙飞;王石磊. 长白落叶松人工林林隙间伐对林下更新及植物多样性的影响[J]. 林业科学, 2011, 47(8): 7-13. |
| [8] | 张象君;王庆成;王石磊;孙强. 小兴安岭落叶松人工纯林近自然化改造对林下植物多样性的影响[J]. 林业科学, 2011, 47(1): 6-14. |
| [9] | 王昆 白帆 黄利亚. 长白山自然保护区保护效果评价[J]. 林业科学, 2010, 46(1): 1-8. |
| [10] | 高宝嘉;张桂娟 周国娜 张鸿军 于志勇 李利学 迟宝利. 承德县人工针叶林地表枯死可燃物参数估测及潜在地表火行为评价[J]. 林业科学, 2009, 12(10): 163-167. |
| [11] | 马履一 李春义 王希群 徐昕. 不同强度间伐对北京山区油松生长及其林下植物多样性的影响[J]. 林业科学, 2007, 43(5): 1-9. |
| [12] | 牟长城 孙晓新 倪志英 杨明 张娜. 大兴安岭林区沼泽-森林人工造林效果综合评估[J]. 林业科学, 2007, 43(10): 51-58. |
| [13] | 黄承才 张骏 江波 朱锦茹 常杰. 浙江省杉木生态公益林凋落物及其与植物多样性的关系[J]. 林业科学, 2006, 42(6): 7-12. |
| [14] | 辉朝茂 杨宇明. 关于云南竹类植物多样性及其保护研究[J]. 林业科学, 2003, 39(1): 145-152. |
| [15] | 杨万勤 钟章成 陶建平 何维明. 缙云山森林土壤酶活性与植物多样性的关系[J]. 林业科学, 2001, 37(4): 124-128. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||