林业科学 ›› 2025, Vol. 61 ›› Issue (10): 175-189.doi: 10.11707/j.1001-7488.LYKX20240478
• 研究论文 • 上一篇
收稿日期:2024-08-07
出版日期:2025-10-25
发布日期:2025-11-05
通讯作者:
李耀翔
E-mail:yaoxiangli@nefu.edu.cn
基金资助:
Haibin Wang1,Cun Chu1,Yaoxiang Li1,*(
),Guangda Liu2
Received:2024-08-07
Online:2025-10-25
Published:2025-11-05
Contact:
Yaoxiang Li
E-mail:yaoxiangli@nefu.edu.cn
摘要:
目的: 研制一款针对山地种植、小规模经营散户的手持便携式蓝莓采摘机,通过刚柔耦合动力学仿真与蓝莓采摘田间试验分析不同工况下采摘机的工作性能,解决人工采摘蓝莓采摘效率低、劳动强度大、果实损伤率高等问题,为蓝莓机械采摘装置的结构设计提供理论参考。方法: 基于采摘机的整机结构和工作原理,对采摘装置进行力学分析,对关键零部件进行有限元分析,分析采摘装置与蓝莓植株相互作用过程中的采摘振动机理。根据蓝莓采摘作业要求,应用Hypermesh、Ansys软件将采摘机关键零部件与蓝莓植株三维模型转换为柔性体,在Adams中建立采摘装置与蓝莓植株的刚柔耦合力学仿真模型,设置蓝莓果实在植株上的分布位置。通过蓝莓采摘仿真试验分析行程速比系数K、手电钻转速n和卡箍夹紧位置对系统动力学性能以及植株不同位置果实采摘力的影响,采用有限元仿真分析采摘机关键零部件的结构强度。以仿真因素为试验变量,利用自行研制的便携式采摘机开展预采试验和机器工作参数试验,以采摘效率、成熟果实采净率、生果脱落率和果实破损率为评价指标,分析机器的采摘性能,得到机器的最优工作参数组合。结果: 1) 动力学仿真结果表明,采摘传动装置行程速比系数K过低时,采摘机构易卡顿;行程速比系数K过高时,机构运动剧烈、铰接部位磨损严重。当行程速比系数K=1.3、手电钻转速n=180 r·min?1时转矩峰值最大
中图分类号:
王海滨,初存,李耀翔,刘广达. 便携式蓝莓采摘机刚柔耦合仿真分析与试验[J]. 林业科学, 2025, 61(10): 175-189.
Haibin Wang,Cun Chu,Yaoxiang Li,Guangda Liu. Rigid-Flexible Coupling Simulation Analysis and Test of Portable Blueberry Harvester[J]. Scientia Silvae Sinicae, 2025, 61(10): 175-189.
图1
便携式蓝莓采摘机结构 1.曲柄Crank;2.曲柄转接轴Crank transfer shaft;3.连杆轴Connecting rod shaft;4.连杆转接轴Connecting rod transfer shaft;5.关节轴承b Joint bearing b;6.连杆锁紧螺母Connecting rod lock nut;7.推杆固定轴a Push rod fixed shaft a;8.关节轴承a Joint bearing a;9.曲柄轴Crank shaft;10.导轨连接板Guide rail connecting plate;11.T型滑块 T-slider;12.导轨Guide rail;13.导轨固定螺丝Guide rail fixing screws;14.转接板固定螺丝Transfer plate fixing screws;15.导轨架板Guide rail rack plate;16.转接板固定螺母Transfer plate fixing nut;17.转接板连接垫片Transfer plate connecting spacer;18.角件Corner piece;19.手电钻Hand drill;20.滑块连接件Slider connector;21.滑块固定螺丝Slider fixing screw;22.滑块锁紧螺母Slider lock nut;23.推杆轴Push rod shaft;24.卡箍锁紧螺母Clamp lock nut;25.卡箍Clamp;26.推杆固定轴b Push rod fixing shaft b;27.卡箍轴Clamp shaft."
表1
Adams中采摘装置各运动部件连接关系"
| 序号 No. | 运动副 Kinematic pair | 连接件 Connecting parts | 被连接件 Connected parts | 运动类型 Type of movement |
| 1 | 固定副Fixed joint | 手电钻Hand drill | 曲柄轴Crank shaft | 相对静止Relative static |
| 2 | 转动副Revolved joint | 曲柄轴Crank shaft | 曲柄Crank | 转动Rotation |
| 3 | 固定副Fixed joint | 关节轴承a Joint bearing a | 连杆轴Connecting rod shaft | 相对静止Relative static |
| 4 | 固定副Fixed joint | 连杆轴Connecting rod shaft | 关节轴承b Joint bearing b | 相对静止Relative static |
| 5 | 转动副Revolved joint | 曲柄Crank | 关节轴承a Joint bearing a | 转动Rotation |
| 6 | 固定副Fixed joint | 推杆固定轴a Push rod fixed shaft a | 推杆轴Push rod shaft | 相对静止Relative static |
| 7 | 固定副Fixed joint | 推杆轴Push rod shaft | 推杆固定轴b Push rod fixed shaft b | 相对静止Relative static |
| 8 | 转动副Revolved joint | 关节轴承b Joint bearing b | 推杆固定轴a Push rod fixed shaft a | 转动Rotation |
| 9 | 固定副Fixed joint | 滑块连接件Slider connector | 滑块固定螺丝Slider fixing screw | 相对静止Relative static |
| 10 | 固定副Fixed joint | 滑块固定螺丝Slider fixing screw | T型滑块T-slider | 相对静止Relative static |
| 11 | 固定副Fixed joint | 推杆轴Push rod shaft | 滑块连接件Slider connector | 相对静止Relative static |
| 12 | 固定副Fixed joint | 导轨Guide rail | 导轨架板Guide rail rack plate | 相对静止Relative static |
| 13 | 固定副Fixed joint | 导轨架板Guide rail rack plate | 角件Corner piece | 相对静止Relative static |
| 14 | 固定副Fixed joint | 角件Corner piece | 导轨连接板Guide rail connecting plate | 相对静止Relative static |
| 15 | 直线副Translation joint | T型滑块T-slider | 导轨Guide rail | 直线运动Rectilinear motion |
| 16 | 固定副Fixed joint | 推杆轴Push rod shaft | 卡箍轴Clamp shaft | 相对静止Relative static |
| 17 | 固定副Fixed jointv | 卡箍轴Clamp shaft | 卡箍Clamp | 相对静止Relative static |
| 18 | 固定副Fixed joint | 卡箍Clamp | 卡箍锁紧螺母Clamp lock nut | 相对静止Relative static |
表3
植株不同生长位置处蓝莓果实编号"
| 序号 No. | 编号 Serial numbers | 蓝莓果实生长位置 Growth location of blueberry fruits growth | 果实质量 Mass of fruit/g |
| 1 | A1 | 主干底部侧枝末梢1/3处生长的末枝对应的蓝莓果实采摘力 The picking force of the blueberry fruit corresponding to the last branch growing at one-third of the tip of the side branch at the bottom of the main trunk | 1 |
| 2 | A2 | 主干中部侧枝末梢1/3处生长的末枝对应的蓝莓果实采摘力 The picking force of the blueberry fruit corresponding to the last branch growing at one-third of the tip of the middle side branch of the main trunk | 1 |
| 3 | A4 | 主干顶部侧枝末梢1/3处生长的末枝对应的蓝莓果实采摘力 The picking force of the blueberry fruit corresponding to the last branch growing at one-third of the tip of the side branch at the top of the main trunk | 1 |
| 4 | B1 | 主干顶端侧枝根部处的蓝莓果实 The blueberry fruit at the root of the side branch at the top of the main trunk | 1 |
| 5 | B2 | 主干顶端侧枝中部处的蓝莓果实 The blueberry fruit at the middle of the side branch at the top of the main trunk | 1 |
| 6 | B3 | 主干顶端侧枝末梢处的蓝莓果实 The blueberry fruit at the tip of the side branch at the top of the main trunk | 1 |
表5
单因素采摘试验"
| 试验因素 Test factors | 试验水平 Test levels | 采摘效率 Picking efficiency/ (kg·min?1) | 成熟果实采净率 Mature fruit picking rate (%) | 生果脱落率 Unripe fruit shedding rate (%) | 果实损伤率 Fruit damage rate (%) |
| 行程速比系数K Coefficients of travel speed variation | 1.3 | 0.19 | 83.20 | 7.20 | 5.90 |
| 1.5 | 0.17 | 80.10 | 6.80 | 5.50 | |
| 1.7 | 0.23 | 84.50 | 8.10 | 7.10 | |
| 手电钻转速n Rotation speed of the hand drill/(r·min?1) | 150 | 0.16 | 79.10 | 8.10 | 4.30 |
| 180 | 0.18 | 85.60 | 8.70 | 5.70 | |
| 210 | 0.22 | 86.10 | 9.60 | 7.30 |
| 鲍玉冬, 梁 钊, 赵彦玲, 等. 蓝莓采收机高通过性自行走装置设计及性能研究. 农业工程学报, 2018a, 34 (24): 36- 45. | |
| Bao Y D, Liang Z, Zhao Y L, et al. Design and performance of high trafficability self-propelled device of blueberry harvester. Transactions of the Chinese Society of Agricultural Engineering, 2018a, 34 (24): 36- 45. | |
| 鲍玉冬, 杨 闯, 赵彦玲, 等. 蓝莓灌木振动特性分析及数值模拟. 哈尔滨理工大学学报, 2018b, 23 (1): 18- 22. | |
| Bao Y D, Yang C, Zhao Y L, et al. Vibration characteristics analysis and experiment of the blueberry shrub. Journal of Harbin University of Science and Technology, 2018b, 23 (1): 18- 22. | |
| 陈京辉. 2022. 基于接触力学的蓝莓抓取软体机械手设计研究. 天津: 天津科技大学. | |
| Chen J H. 2022. Research on design of blueberry grasping soft manipulator based on contact mechanics. Tianjin: Tianjin University of Science & Technology. [in Chinese] | |
| 陈嘉瑶, 王 英, 梁冬泰, 等. 小型化轴向振动式蓝莓采摘机设计与试验. 机械设计, 2021, 38 (4): 37- 43. | |
| Chen J Y, Wang Y, Liang D T, et al. Design and experiment of the miniaturized axial-vibrating blueberry picker. Journal of Machine Design, 2021, 38 (4): 37- 43. | |
| 迟夜朦. 2014. 笃斯越橘快繁体系研究. 哈尔滨: 东北农业大学. | |
| Chi Y M. 2014. Research on the micropropagation of Vaccinium uliginosum. Harbin: Northeast Agricultural University. [in Chinese] | |
|
耿 雷, 郭艳玲, 王海滨. 高丛蓝莓采摘机采摘系统设计与试验. 农业机械学报, 2016, 47 (3): 67- 74, 81.
doi: 10.6041/j.issn.1000-1298.2016.03.010 |
|
|
Geng L, Guo Y L, Wang H B. Picking system design and experiment for highbush blueberry picking machine. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47 (3): 67- 74, 81.
doi: 10.6041/j.issn.1000-1298.2016.03.010 |
|
|
郭艳玲, 鲍玉冬, 何培庄, 等. 手推式矮丛蓝莓采摘机设计与试验. 农业工程学报, 2012, 28 (7): 40- 45.
doi: 10.3969/j.issn.1002-6819.2012.07.007 |
|
|
Guo Y L, Bao Y D, He P Z, et al. Design and experiment of hand-push lowbush blueberry picking machine. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28 (7): 40- 45.
doi: 10.3969/j.issn.1002-6819.2012.07.007 |
|
|
郭艳玲, 聂宏宇, 李志鹏, 等. 蓝莓采摘实验台的设计与试验研究. 农机化研究, 2020, 42 (6): 130- 135, 141.
doi: 10.3969/j.issn.1003-188X.2020.06.023 |
|
|
Guo Y L, Nie H Y, Li Z P, et al. Design and experimental study of blueberry picking experiment platform. Journal of Agricultural Mechanization Research, 2020, 42 (6): 130- 135, 141.
doi: 10.3969/j.issn.1003-188X.2020.06.023 |
|
|
何家成, 汪 洋, 刘宏博, 等. 便携式果园采摘机设计. 农机化研究, 2018, 40 (5): 83- 87.
doi: 10.3969/j.issn.1003-188X.2018.05.015 |
|
|
He J C, Wang Y, Liu H B, et al. Design of portable orchard picking machine. Journal of Agricultural Mechanization Research, 2018, 40 (5): 83- 87.
doi: 10.3969/j.issn.1003-188X.2018.05.015 |
|
| 李志鹏, 张 超, 王博男, 等. 基于振动策略的蓝莓采摘机的设计研究. 森林工程, 2020, 36 (2): 55- 61. | |
| Li Z P, Zhang C, Wang B N, et al. Research on design of blueberry picker based on vibration strategy. Forest Engineering, 2020, 36 (2): 55- 61. | |
|
王海滨, 李志鹏, 姜雪松, 等. 基于槽型凸轮传动的蓝莓采摘机设计与试验. 农业机械学报, 2018, 49 (10): 80- 91.
doi: 10.6041/j.issn.1000-1298.2018.10.010 |
|
|
Wang H B, Li Z P, Jiang X S, et al. Design and experiment on blueberry picking machine based on groove cam drive. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49 (10): 80- 91.
doi: 10.6041/j.issn.1000-1298.2018.10.010 |
|
|
徐 潺, 范 艳, 张成玉, 等. 适用于山地手持式电动蓝莓采摘机的研制. 农机化研究, 2021, 43 (12): 133- 137.
doi: 10.3969/j.issn.1003-188X.2021.12.024 |
|
|
Xu C, Fan Y, Zhang C Y, et al. Research and development of hand-held pure electric blueberry picker suitable for mountainous regions. Journal of Agricultural Mechanization Research, 2021, 43 (12): 133- 137.
doi: 10.3969/j.issn.1003-188X.2021.12.024 |
|
| 闫珍奇. 2020. 梳刷振动式高丛蓝莓采收机的总体设计与试验研究. 杭州: 浙江农林大学. | |
| Yan Z Q. 2020. Design and experimental research on the comb-brush vibrating highbush blueberry harvester. Hangzhou: Zhejiang A & F University. [in Chinese] | |
| 张长青, 王 倩, 黄正金, 等. 江苏省蓝莓产业发展现状与展望. 北方园艺, 2021, (18): 155- 160. | |
| Zhang C Q, Wang Q, Huang Z J, et al. Development and prospect of blueberry industry in Jiangsu Province. Northern Horticulture, 2021, (18): 155- 160. | |
|
Brown G K, Schulte N L, Timm E J, et al. Estimates of mechanization effects on fresh blueberry quality. Applied Engineering in Agriculture, 1996, 12 (1): 21- 26.
doi: 10.13031/2013.25435 |
|
|
Casamali B, Williamson J G, Kovaleski A P, et al. Mechanical harvesting and postharvest storage of two southern highbush blueberry cultivars grafted onto Vaccinium arboreum rootstocks. HortScience, 2016, 51 (12): 1503- 1510.
doi: 10.21273/HORTSCI11323-16 |
|
| Christie D E. 1967. Berry harvester. United States: 3325984, 1967-6-20. | |
|
Das A K, Esau T J, Zaman Q U, et al. Machine vision system for real-time debris detection on mechanical wild blueberry harvesters. Smart Agricultural Technology, 2023, 4, 100166.
doi: 10.1016/j.atech.2022.100166 |
|
| Erdoǧan D, Güner M, Dursun E, et al. Mechanical harvesting of apricots. Biosystems Engineering, 2003, 85 (5): 19- 28. | |
|
Esau K, Esau T, Zaman Q, et al. Effective use of a variable speed blower fan on a mechanical wild blueberry harvester. Applied Engineering in Agriculture, 2018, 34 (5): 831- 840.
doi: 10.13031/aea.12818 |
|
| Farooque A A, Zaman Q U, Groulx D, et al. Effect of ground speed and header revolutions on the picking efficiency of a commercial wild blueberry harvester. Applied Engineering in Agriculture, 2014, 30 (4): 535- 546. | |
|
Haydar Z, Esau T J, Farooque A A, et al. Deep learning supported machine vision system to precisely automate the wild blueberry harvester header. Scientific Reports, 2023, 13 (1): 10198.
doi: 10.1038/s41598-023-37087-z |
|
| Hedden S, Gaston H P, Levin J H. Harvesting blueberries mechanically. Michigan Agriculture Experiment Station Bulletin, 1959, 42, 24- 34. | |
| Hu B, Yang W Q, Andrews H, et al. Towards a semi-mechanical harvesting platform system for harvesting blueberries with fresh-market quality. Acta Horticulturae, 2017, (1180): 335- 340. | |
| Mann D D, Petkau D S. Removal of sea buckthorn (Hippophae rhamnoides L. ) berries by shaking. Canadian Biosystems Engineering, 2002, 43 (2): 23- 28. | |
| Mckibben H E, Jones P F. 1962. Oscillating blueberry stripper: 3023565. 1962−03−06. | |
| Peterson D L, Whiting M D, Wolford S D. Fresh-market quality tree fruit harvester, Part I: sweet cherry. Applied Engineering in Agriculture, 2003, 19 (5): 539- 543. | |
|
Sargent S A, Takeda F, Williamson J G, et al. Harvest of southern highbush blueberry with a modified, over-the-row mechanical harvester: use of handheld shakers and soft catch surfaces. Agriculture, 2019, 10 (1): 4.
doi: 10.3390/agriculture10010004 |
|
| Sarig Y. Robotics of fruit harvesting: a state-of-the-art review. Journal of Agricultural Engineering Research, 2003, 54 (4): 265- 280. | |
| Strik B. Blueberry production and research treands in north America. Acta Horticulturae, 2006, 715, 173- 184. | |
|
Takeda F, Krewer G, Li C, et al. Techniques for increasing machine harvest efficiency in highbush blueberry. HortTechnology, 2013, 23 (4): 430- 436.
doi: 10.21273/HORTTECH.23.4.430 |
|
|
Takeda F, Yang W, Li C Y, et al. Applying new technologies to transform blueberry harvesting. Agronomy, 2017, 7 (2): 33.
doi: 10.3390/agronomy7020033 |
|
|
Yu P, Li C, Takeda F, et al. Measurement of mechanical impacts created by rotary, slapper, and sway blueberry mechanical harvesters. Computers and Electronics in Agriculture, 2014, 101, 84- 92.
doi: 10.1016/j.compag.2013.12.001 |
| [1] | 杨春梅,刘彤彬,马亚强,丁禹程,王金聪,胡松,宋文龙. 基于响应曲面法的木材喷涂漆雾扩散角度与均匀度优化[J]. 林业科学, 2024, 60(6): 136-147. |
| [2] | 李庆鹏,李洋,霍若冰,徐曈晖,李馨男. 冰温状态下蓝莓质量损失率与质构参数变化规律及相关分析[J]. 林业科学, 2022, 58(8): 117-125. |
| [3] | 刘九庆,朱斌海,杨春梅,于航. 植树机挖穴机构动态性能分析与试验探究[J]. 林业科学, 2022, 58(12): 62-74. |
| [4] | 李洋,张茜,陈业莉,刘美爽. 贮运过程中振动损伤对蓝莓品质的影响[J]. 林业科学, 2020, 56(9): 40-50. |
| [5] | 王巍,王云婷,宋文龙. 基于FlexSim机群式布置木质家具生产线仿真[J]. 林业科学, 2020, 56(4): 135-142. |
| [6] | 李伟,其其格,黄旭,岳阳,尹靖琨,王瑞俭. 蓝莓栽培品种的DNA条形码[J]. 林业科学, 2019, 55(12): 151-161. |
| [7] | 孙莎, 郜海燕, 熊涛, 陈杭君, 刘瑞玲, 吴伟杰. 五倍子提取液对蓝莓采后病害和品质的影响[J]. 林业科学, 2018, 54(6): 53-62. |
| [8] | 陈文荣, 潘霞, 邵俊怡, 廖芳蕾, 杨莉, 胡盈盈, 余颖, 郭卫东. 蓝莓VcLon1基因的克隆、表达及抗旱性分析[J]. 林业科学, 2018, 54(6): 73-84. |
| [9] | 周玉成, 宋明亮, 马岩, 杨春梅, 张佳微, 邓英健, 蒋婷. 太阳能储能地板设计及传热模型仿真分析[J]. 林业科学, 2018, 54(11): 149-157. |
| [10] | 许时星, 郜海燕, 陈杭君, 韩强. 振动胁迫对蓝莓果实品质和抗氧化酶活性的影响[J]. 林业科学, 2017, 53(9): 26-34. |
| [11] | 张鹤华, 李艳芳, 聂佩显, 王红阳, 张凌云. 蓝莓果实同化物韧皮部卸载路径与糖代谢酶活性[J]. 林业科学, 2017, 53(3): 40-48. |
| [12] | 乌凤章, 朱心慰, 胡锐锋, 王贺新, 陈英敏. NaCl胁迫对2个蓝莓品种幼苗生长及离子吸收、运输和分配的影响[J]. 林业科学, 2017, 53(10): 40-49. |
| [13] | 叶振风, 樊基胜, 贾兵, 樊胜华, 朱立武. 蓝莓耐寒良种‘徽王1号’[J]. 林业科学, 2016, 52(7): 172-172. |
| [14] | 张茂震, 王广兴, 葛宏立, 徐丽华. 基于空间仿真的仙居县森林碳分布估算[J]. 林业科学, 2014, 50(11): 13-22. |
| [15] | 齐英杰, 马晓君, 胡万明. 木制门套线横截面曲线的数学模型与仿真[J]. 林业科学, 2013, 49(11): 141-145. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||