林业科学 ›› 2021, Vol. 57 ›› Issue (6): 1-13.doi: 10.11707/j.1001-7488.20210601
袭月1,张志强1,周洁2,王丽群1,陈立欣1,*
收稿日期:
2020-01-03
出版日期:
2021-06-25
发布日期:
2021-08-06
通讯作者:
陈立欣
基金资助:
Yue Xi1,Zhiqiang Zhang1,Jie Zhou2,Liqun Wang1,Lixin Chen1,*
Received:
2020-01-03
Online:
2021-06-25
Published:
2021-08-06
Contact:
Lixin Chen
摘要:
目的: 探究城市地表温度时空变化特征,阐明不同植被覆盖度条件下植被降温差异,为改善城市生态环境、合理规划城市绿地提供参考。方法: 以城市化水平较高的北京五环内区域为研究对象,基于1999-2017年5期Landsat遥感影像反演得到的地表温度和植被覆盖度图像,采用标准差分类法将研究区划分为极低温区、低温区、次低温区、中温区、次高温区、高温区和极高温区,探究研究期地表温度时空变化特征,运用线性回归进一步对300、600、900和1 200 m栅格尺度下的植被覆盖度和地表温度进行相关性分析。结果: 1999-2017年,北京五环内热环境的时间变化总体分为2个阶段:1999-2011年高温区和极高温区面积逐渐增加;2011-2017年,热环境状况有所改善,高温区和极高温区面积占比分别下降0.96%和0.71%,极低温区和低温区面积占比分别升高0.45%和1.19%。热环境空间格局随北京城市建设发生显著变化,1999年地表温度较高的区域集中在二环内,1999年后逐渐向外转移,至2011年,高温区和极高温区集聚在三环至五环间的东南部区域(2011年高温区和极高温区在三环至五环间分布比例最高,分别为70.73%和78.92%),2017年五环内区域整体热环境有一定程度改善。研究期内北京五环区域植被覆盖度总体呈先降后升的趋势,2005年植被覆盖度最低(31.84%),且植被覆盖度较高的区域主要分布在四环至五环,四环内区域植被覆盖度相对较低。地表温度与植被覆盖度总体呈线性负相关(P < 0.001),且在中植被覆盖度条件下(40%~60%)相关关系更稳定。同一栅格尺度下,植被覆盖度越高,降温效应越强,地表温度越低。结论: 1999-2011年,高温区和极高温区面积逐渐增加,且高温区域由二环内向外转移;2011-2017年,热环境状况有所改善。研究期内植被覆盖度总体呈先降后升的趋势,且植被覆盖度在四环至五环间区域较高。植被覆盖度增加可降低地表温度,且在植被覆盖度达到40%~60%时才表现出稳定的降温效果,适当提高植被覆盖度,可提升城市绿地降温功能,缓解城市热环境。
中图分类号:
袭月,张志强,周洁,王丽群,陈立欣. 城市化进程下地表温度时空变化及其与植被覆盖度的相关性——以北京五环区域为例[J]. 林业科学, 2021, 57(6): 1-13.
Yue Xi,Zhiqiang Zhang,Jie Zhou,Liqun Wang,Lixin Chen. Spatial and Temporal Variation of Ground Surface Temperature under Urbaniation and Its Correlation with Vegetation Coverage: A Case Study of the 5th Ring Road of Beijing[J]. Scientia Silvae Sinicae, 2021, 57(6): 1-13.
表1
遥感影像信息①"
遥感影像 Remote sensing image | 轨道号 Track number | 成像时间 Imaging time | 成像质量 Image quality |
Landsat-5 TM | 123/32 | 1999-07-25 | 无云, 良好Cloudless and fine |
Landsat-5 TM | 123/32 | 2005-07-25 | 无云, 良好Cloudless and fine |
Landsat-5 TM | 123/32 | 2009-07-20 | 无云, 良好Cloudless and fine |
Landsat-5 TM | 123/32 | 2011-07-26 | 无云, 良好Cloudless and fine |
Landsat-8 OLI/TIRS | 123/32 | 2017-07-10 | 无云良好Cloudless and fine |
表2
地表温度等级划分"
等级 Level | 地表温度阈值 Threshold value of land surface temperature |
极低温区Extremely low temperature zone | D ≤ X-2.5s |
低温区Low temperature zone | X-2.5s < D ≤ X-1.5s |
次低温区Sub-low temperature zone | X-1.5s < D ≤ X-0.5s |
中温区Medium temperature zone | X-0.5s < D ≤ X+0.5s |
次高温区Sub-high temperature zone | X+0.5s < D ≤ X+1.5s |
高温区High temperature zone | X+1.5s < D ≤ X+2.5s |
极高温区Extremely high temperature zone | D > X+2.5s |
表3
不同年份地表温度"
日期 Date | 最低温度 Minimum temperature/℃ | 最高温度 Maximum temperature/℃ | 平均温度 Mean temperature/℃ | 空间标准差 Spatial standard deviation/℃ |
1999-07-25 | 30.44 | 66.17 | 47.29 | 4.01 |
2005-07-25 | 25.15 | 53.67 | 37.24 | 2.96 |
2009-07-20 | 19.22 | 64.18 | 42.63 | 3.87 |
2011-07-26 | 20.33 | 59.61 | 39.23 | 3.55 |
2017-07-10 | 24.97 | 64.38 | 45.97 | 3.95 |
崔凤娇, 邵锋, 齐锋, 等. 植被对城市热岛效应影响的研究进展. 浙江农林大学学报, 2020, 7 (1): 171- 181. | |
Cui F J , Shao F , Qi F , et al. Research progress on the influence of vegetation on urban heat island effect. Journal of Zhejiang A & F University, 2020, 7 (1): 171- 181. | |
杜红玉. 2018. 特大型城市"蓝绿空间"冷岛效应及其影响因素研究——以上海市为例. 上海: 华东师范大学博士学位论文. | |
Du H Y. 2018. Study on the cold island effect of "blue-green space" and its influencing factors in super large cities: a case study of Shanghai. Shanghai: PhD thesis of East China Normal University. [in Chinese] | |
葛荣凤, 王京丽, 张力小, 等. 北京市城市化进程中热环境响应. 生态学报, 2016, 36 (19): 6040- 6049. | |
Ge R F , Wang J L , Zhang L X , et al. Thermal environment response in the process of urbanization in Beijing. Acta Ecologica Sinica, 2016, 36 (19): 6040- 6049. | |
刘海轩, 许丽娟, 吴鞠, 等. 城市森林降温效应影响因素研究进展. 林业科学, 2019, 55 (4): 144- 151. | |
Liu H X , Xu L J , Wu J , et al. Research progress on factors affecting the cooling effect of urban forest. Scientia Silvae Sinicae, 2019, 55 (4): 144- 151. | |
秦仲, 李湛东, 成仿云, 等. 北京园林绿地5种植物群落夏季降温增湿作用. 林业科学, 2016, 52 (1): 37- 47. | |
Qin Z , Li Z D , Cheng F Y , et al. Cooling and humidifying effect of five plant communities in Beijing garden green area in summer. Scientia Silvae Sinicae, 2016, 52 (1): 37- 47. | |
王文杰, 申文明, 刘晓曼, 等. 基于遥感的北京市城市化发展与城市热岛效应变化关系研究. 环境科学研究, 2006, 19 (2): 44- 48.
doi: 10.3321/j.issn:1001-6929.2006.02.014 |
|
Wang W J , Shen W M , Liu X M , et al. Study on the relationship between urbanization development and urban heat island effect based on remote sensing in Beijing. Environmental Science Research, 2006, 19 (2): 44- 48.
doi: 10.3321/j.issn:1001-6929.2006.02.014 |
|
徐涵秋. 基于城市地表参数变化的城市热岛效应分析. 生态学报, 2011, 31 (14): 3890- 3901. | |
Xu H Q . Analysis on urban heat island effect based on the dynamics of urban surface biophysical descriptors. Acta Ecologica Sinica, 2011, 31 (14): 3890- 3901. | |
杨宇翀, 林箐, 岳晓蕾. 区域和城市尺度下的城市森林冷岛效应——以北京市五环内为例. 北京规划建设, 2018, 20 (5): 93- 96. | |
Yang Y C , Lin J , Yue X L . Urban forest cold island effect at regional and urban scales: a case study within fifth ring road in Beijing. Beijing Planning and Construction, 2018, 20 (5): 93- 96. | |
Akbari H , Rose L S . Urban surfaces and heat island mitigation potentials. Journal of the Human-Environment System, 2008, 11 (2): 85- 101.
doi: 10.1618/jhes.11.85 |
|
Alavipanah S , Wegman M , Qureshi S , et al. The role of vegetation in mitigating urban land surface temperatures: a case study of Munich, Germany during the warm season. Sustainability, 2015, 7 (4): 4689- 4706.
doi: 10.3390/su7044689 |
|
Bek M A , Azmy N , Elkafrawy S . The effect of unplanned growth of urban areas on heat island phenomena. Ain Shams Engineering Journal, 2018, 9 (4): 3169- 3177.
doi: 10.1016/j.asej.2017.11.001 |
|
Best M J , Grimmond C S B . Investigation of the impact of anthropogenic heat flux within an urban land surface model and PILPS-urban. Theoretical and Applied Climatology, 2016, 126 (1/2): 51- 60. | |
Berry R , Livesley S J , Aye L . Tree canopy shade impacts on solar irradiance received by building walls and their surface temperature. Building and Environment, 2013, 69 (11): 91- 100. | |
Cao W , Huang L , Liu L L , et al. Overestimating impacts of urbanization on regional temperatures in developing megacity: Beijing as an example. Advances in Meteorology, 2019, (2): 3985715. | |
Carlson T N , Arthur S T . The impact of land use-land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Global and Planetary Change, 2000, 25 (1): 49- 65. | |
Chen W , Zhang Y , Yu C , et al. Evaluation of urbanization dynamics and its impacts on surface heat islands: a case study of Beijing, China. Remote Sensing, 2017, 9 (5): 453.
doi: 10.3390/rs9050453 |
|
Chen Y H , Cai Y B , Tong C . Quantitative analysis of urban cold island effects on the evolution of green spaces in a coastal city: a case study of Fuzhou, China. Environmental Monitoring and Assessment, 2019, 191 (1): 121.
doi: 10.1007/s10661-019-7213-x |
|
Chun B , Guldmann J M . Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landscape and Urban Planning, 2014, 125 (3): 76- 88. | |
Du Y , Xie Z Q , Zeng Y , et al. Impact of urban expansion on regional temperature change in the Yangtze River Delta. Journal of Geographical Sciences, 2007, 17 (4): 387- 398.
doi: 10.1007/s11442-007-0387-0 |
|
Duncan J M A , Boruff B , Saunders A , et al. Turning down the heat: an enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale. Science of the Total Environment, 2019, 656 (3): 118- 128. | |
Estoque R C , Murayama Y . Classification and change detection of built-up lands from landsat-7 ETM+ and landsat-8 OLI/TIRS imageries: a comparative assessment of various spectral indices. Ecological Indicators, 2017, 56, 205- 217. | |
Guo L J , Liu R M , Men C , et al. Quantifying and simulating landscape composition and pattern impacts. Science of the Total Environment, 2019a, 654 (3): 430- 440. | |
Guo M H , Chen S H , Wang W M , et al. Spatiotemporal variation of heat fluxes in Beijing with land use change from 1997 to 2017. Physics and Chemistry of the Earth, 2019b, 110 (4): 51- 60. | |
Gago E J , Roldán J , Pacheco T R , et al. The city and urban heat islands: a review of strategies to mitigate adverse effects. Renewable and Sustainable Energy Reviews, 2013, 25 (9): 749- 758. | |
Gill S E , Rahman M A , Handley J F , et al. Modelling water stress to urban amenity grass in Manchester UK under climate change and its potential impacts in reducing urban cooling. Urban Forestry & Urban Greening, 2013, 12 (3): 350- 358. | |
Grimm N B , Faeth S H , Golubiewski N E , et al. Global change and the ecology of cities. Science, 2008, 319 (5864): 756- 760.
doi: 10.1126/science.1150195 |
|
Jenerette G D , Harlan S L , Stefanov W L , et al. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA. Ecological Applications, 2011, 21 (7): 2637- 2651.
doi: 10.1890/10-1493.1 |
|
Khamchiangta D , Dhaka S . Physical and non-physical factors driving urban heat island: case of Bangkok Metropolitan Administration, Thailand. Journal of Environmental Management, 2019, 248 (10): 109285. | |
Lau S S , Lin P , Qin H . A preliminary study on environmental performances of pocket parks in high-rise and high-density urban context in HongKong. International Journal of Low-Carbon Technologies, 2012, 7 (3): 215- 225.
doi: 10.1093/ijlct/cts033 |
|
Lee S H , Lee K S , Jin W C , et al. Effect of an urban park on air temperature differences in a central business district area. Landscape and Ecological Engineering, 2009, 5 (2): 183- 191.
doi: 10.1007/s11355-009-0067-6 |
|
Li X M , Zhou W Q , Ouyang Z Y , et al. Spatial pattern of green space affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landscape Ecology, 2012, 27 (6): 887- 898.
doi: 10.1007/s10980-012-9731-6 |
|
Luo X , Peng Y . Scale effects of the relationships between urban heat islands and impact factors based on a geographically-weighted regression model. Remote Sensing, 2016, 8 (9): 760- 769.
doi: 10.3390/rs8090760 |
|
Ma Y , Kuang Y , Huang N . Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM + imagery. International Journal of Applied Earth Observation and Geoinformation, 2010, 12 (2): 110- 118.
doi: 10.1016/j.jag.2009.12.002 |
|
Min M , Lin C , Duan X J . Spatial distribution and driving force analysis of urban heat island effect based on raster data: a case study of the Nanjing metropolitan area, China. Sustainable Cities and Society, 2019, 50 (10): 101637. | |
Naeem S , Cao C X , Fatima K , et al. Landscape greening policies-based land use/land cover simulation for Beijing and islamabad: an implication of sustainable urban ecosystems. Sustainability, 2018, 10 (4): 1049.
doi: 10.3390/su10041049 |
|
Ng E , Chen L , Wang Y , et al. A study on the cooling effects of greening in a high-density city: an experience from Hong Kong. Building and Environment, 2012, 47 (1): 256- 271. | |
Oliveira S , Andrade H , Vaz T . The cooling effect of green spaces as a contribution to the mitigation of urban heat: a case study in Lisbon. Building and Environment, 2011, 46 (11): 2186- 2194.
doi: 10.1016/j.buildenv.2011.04.034 |
|
Qiu G Y , Li H Y , Zhang Q T , et al. Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. Journal of Integrative Agriculture, 2013, 12 (8): 1307- 1315.
doi: 10.1016/S2095-3119(13)60543-2 |
|
Ren C , Yang R Z , Cheng C , et al. Creating breathing cities by adopting urban ventilation assessment and wind corridor plan: the implementation in Chinese cities. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182 (11): 170- 188. | |
Sun R H , Chen L D . Effects of green space dynamics on urban heat islands: Mitigation and diversification. Ecosystem Services, 2017, 23 (2): 38- 46. | |
Taha H , Douglas S , Haney J . Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, 1997, 25 (2): 99- 103.
doi: 10.1016/S0378-7788(96)00999-1 |
|
Wang Y , Berardi U , Akbari H . Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings, 2016, 114 (2): 2- 19. | |
Yao R , Wang L C , Huang X , et al. Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Science of the Total Environment, 2017, 609 (12): 742- 754. | |
Yu Z W , Yao Y W , Yang G Y , et al. Strong contribution of rapid urbanization and urban agglomeration development to regional thermal environment dynamics and evolution. Forest Ecology and Management, 2019, 446 (8): 214- 225. | |
Zhang X Y , Zhong T Y , Feng X Z , et al. Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. International Journal of Remote Sensing, 2009, 30 (4): 2105- 2118. | |
Zhou D C , Zhao S Q . Surface urban heat island in China's 32 major cities: spatial patterns and drivers. Remote Sensing of Environment, 2014, 152 (9): 51- 61. | |
Ziter C D , Pedersen E J , Kucharik C J , et al. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. PNAS, 2019, 116 (2): 7575- 7580. |
[1] | 尹赛男, 王东昶, 单延龙, 韩喜越, 高博, 王明霞. 黑龙江省3种主要火源引发森林火灾的次数和面积时空分布特征[J]. 林业科学, 2021, 57(6): 115-124. |
[2] | 孙涛,贾志清,刘虎俊,尚雯,刘江,张立恒. 民勤荒漠绿洲过渡带不同发育阶段白刺灌丛沙堆点格局特征[J]. 林业科学, 2020, 56(7): 12-21. |
[3] | 王锋, 卢琦. 沙地樟子松散生单木的天然更新幼苗空间分布模型[J]. 林业科学, 2019, 55(8): 1-8. |
[4] | 闫薇, 张彬, 傅万四, 周建波. 原态竹材湿热应变响应[J]. 林业科学, 2019, 55(7): 137-145. |
[5] | 古琳, 王成, 王艳英, 王晓磊, 孙振凯, 王茜, 孙睿霖. 惠山国家森林公园游憩林小气候与人体舒适度变化规律[J]. 林业科学, 2019, 55(6): 150-159. |
[6] | 董灵波,王鹤智,刘兆刚. 凉水自然保护区森林类型斑块的空间格局及关联性动态[J]. 林业科学, 2019, 55(10): 138-151. |
[7] | 王金龙, 杨伶, 张贵, 尹少华. 基于空间网络的湖南“森林生态·经济·社会”复合系统空间格局演变分析[J]. 林业科学, 2018, 54(7): 118-129. |
[8] | 翟婉璐, 钟哲科, 高贵宾, 杨慧敏. 覆盖经营对雷竹林土壤细菌群落结构演变及多样性的影响[J]. 林业科学, 2017, 53(9): 133-142. |
[9] | 马志波, 黄清麟, 庄崇洋, 郑群瑞, 王宏. 典型中亚热带天然阔叶林群落各乔木亚层的空间格局与关联性[J]. 林业科学, 2017, 53(12): 12-19. |
[10] | 欧朝蓉, 朱清科, 孙永玉. 元谋干热河谷旱季植被覆盖度的时空异质性[J]. 林业科学, 2017, 53(11): 20-28. |
[11] | 王梅, 赵晨光, 王莹, 楚光明. 盐穗木种群空间点格局对地下水埋深的响应[J]. 林业科学, 2015, 51(11): 17-24. |
[12] | 王云霓, 曹恭祥, 王彦辉, 熊伟, 于澎涛, 徐丽宏. 宁夏六盘山华北落叶松人工林植被碳密度特征[J]. 林业科学, 2015, 51(10): 10-16. |
[13] | 楚光明, 王梅, 张硕新. 准噶尔盆地南缘洪积扇无叶假木贼种群空间点格局[J]. 林业科学, 2014, 50(4): 8-14. |
[14] | 阎伟;宗世祥;王荣;王建伟;曹川建;骆有庆. 油蒿不同演替阶段钻蛀性害虫幼虫与天敌在空间格局上的关系[J]. 林业科学, 2011, 47(12): 179-183. |
[15] | 严俊霞;秦作栋 李洪建 张义辉. 黄土高原地区柠条人工林土壤呼吸[J]. 林业科学, 2010, 46(3): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||