郝珉辉,张忠辉,赵珊珊,等. 2017. 吉林蛟河针阔混交林树木生长与生境的关联性.生态学报,37(10):3437-3444. (Hao M H, Zhang Z H, Zhao S S, et al. 2017. Spatial autocorrelation patterns of tree growth in a coniferous and broad-leaved mixed forest in Jiaohe of Jilin Province. Acta Geologica Sinica, 37(10):3437-3444.[in Chinese]) 吉林森林编委会. 1988.吉林森林.长春:吉林科学技术出版社. (Editor Committee of Jilin Forest. 1988. Jilin forest. Changchun:Jilin Science and Technology Press Co.,Ltd.[in Chinese]) 贾翔, 马芳芳, 周旺明,等. 2017. 气候变化对阔叶红松林潜在地理分布区的影响. 生态学报, 37(2):464-473. (Jia X, Ma F F, Zhou W M, et al. 2017. Impacts of climate change on the potential geographical distribution of broadleaved Korean pine(Pinus koraiensis)forests. Acta Ecologica Sinica, 37(2):464-473.[in Chinese]) 金佳鑫, 江洪, 彭威,等. 2013.基于物种分布模型评价土壤因子对我国毛竹潜在分布的影响. 植物生态学报, 37(7):631-640. (Jin J X, Jiang H, Peng W, et al. 2013.Evaluating the impact of soil factors on the potential distribution of Phyllostachys edulis(bamboo) in China based on the species distribution model. Chinese Journal of Plant Ecology, 37(7):631-640.[in Chinese]) 冷文芳, 贺红士, 布仁仓,等.2007. 中国东北落叶松属3种植物潜在分布对气候变化的敏感性分析. 植物生态学报, 31(5):825-833. (Leng W F, He H S, Bu R C, et al. 2007.Sensitivity analysis of the impacts of climate change on potential distribution of three Larch(Larix) species in northeastern China. Chinese Journal of Plant Ecology, 31(5):825-833.[in Chinese]) 乔慧捷, 胡军华, 黄继红. 2013. 生态位模型的理论基础、发展方向与挑战. 中国科学:生命科学, 43(11):915-927. (Qiao H J, Hu J H, Huang J H. 2013. Theoretical basis, future directions, and challenges for ecological niche models. Scientia Sinica Vitae, 43(11):915-927.[in Chinese]) 王雷宏, 杨俊仙, 郑玉红,等. 2012.台湾林檎(Malus doumeri(Bois.) Chev.)地理分布模拟. 东北林业大学学报, 40(9):15-18. (Wang L H, Yang J S, Zheng Y H, et al. 2012. Modeling of geographic distribution of Malus doumeri. Journal of Northeast Forestry University, 40(9):15-18.[in Chinese]) 王运生, 谢丙炎, 万方浩,等. 2007. ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 15(4):365-372. (Wang Y S, Xie B Y, Wan F H,et al. 2007. Application of ROC curve analysis in evaluating the performance of alien species's potential distribution models. Biodiversity Science, 15(4):365-372.[in Chinese]) 许仲林, 彭焕华, 彭守璋. 2015. 物种分布模型的发展及评价方法. 生态学报, 35(2):557-567. (Xu Z L, Peng H H, Peng S Z. 2015. The development and evaluation of species distribution models. Acta Ecologica Sinica, 35(2):557-567.[in Chinese]) 吴正方, 靳英华, 刘吉平,等. 2003. 东北地区植被分布全球气候变化区域响应. 地理科学, 23(5):564-570. (Wu Z F, Jin Y H, Liu J P, et al. 2003. Respons of vegetation distribution to global climate change in northest China. Scientia Geographica Sinica,23(5):564-570.[in Chinese]) 晏寒冰, 吴军, 李建林,等. 2016.东北地区主要森林物种的分布区气候数据分析. 生物数学学报, 31(1):118-128. (Yan H B, Wu J, Li J L, et al. 2016. The climate data analysis on the distribution area of the main forest species in northeast China. Journal of Biomathematics, 31(1):118-128.[in Chinese]) 殷晓洁, 周广胜, 隋兴华,等. 2013. 蒙古栎地理分布的主导气候因子及其阈值. 生态学报, 33(1):103-109. (Yin X J, Zhou G S, Sui X H, et al. 2013. Dominant climatic factors of Quercus mongolica geographical distribution and their thresholds. Acta Ecoligica Sinica, 33(1):103-109.[in Chinese]) 詹昭宁.1995.中国森林立地类型.北京:中国林业出版社. (Zhan Z N. 1995. Forest site types of China. Beijing:China Forestry Publishing House.[in Chinese]) Ballesteros-Barrera C, Martínez-Meyer E, Gadsden H. 2007. Effects of land-cover transformation and climate change on the distribution of two microendemic lizards, genus uma, of northern Mexico. Journal of Herpetology, 41(4):733-740. Benito-Garzón M,Ruiz-Benito P,Zavala M A.2013. Interspecific differences in tree growth and mortality responses to environmental drivers determine potential species distributional limits in Iberian forests:including tree growth and mortality into species distribution. Global Ecology & Biogeography, 22(10):1141-1151. Boos D D, Stefanski L A. 2013. Essential statistical inference:theory and mothods. New York:Springer, 385-411. Breiman L, Friedman J H, Olshen R A, et al. 1984. classification and regression trees. Belmont:Wadsworth,358. Busby J R. 1991. BIOCLIM:a bioclimate analysis and prediction system. Plant Protection Quarterly, 6:8-9. Butler C J, Stanila B D, Iverson J B, et al. 2016. Projected changes in climatic suitability for Kinosternon turtles by 2050 and 2070. Ecology & Evolution, 6(21):7690-7705. Cabeza M, Araújo M B, Wilson R J, et al. 2004. Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology, 41(2):252-262. Cao B, Bai C, Zhang L, et al. 2016. Modeling habitat distribution of cornus officinalis with maxent modeling and fuzzy logics in China. Journal of Plant Ecology, 9(6):742-751. Dolos K, Bauer A, Albrecht S. 2015. Site suitability for tree species:Is there a positive relation between a tree species' occurrence and its growth? European Journal of Forest Research, 134(4):609-621. Duan R Y, Kong X Q, Huang M Y, et al. 2014. The predictive performance and stability of six species distribution models. Plos One, 9(11):e112764. Elith J, Graham C H, Anderson R P, et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29:129-151. Elith J, Phillips S J, Hastie T, et al. 2011. A statistical explanation of maxent for ecologists. Diversity and Distributions, 17(1):43-57. Falk W, Mellert K H. 2011. Species distribution models as a tool for forest management planning under climate change:risk evaluation of Abies alba in Bavaria. Journal of Vegetation Science, 22(4):621-634. Falk W, Hempelmann N. 2013. Species favourability shift in europe due to climate change:a case study for Fagus sylvatica L. and Picea abies(L.) Karst. based on an ensemble of climate models. Journal of Climatology, 2013(6):18. Fourcade Y, Engler J O, Rödder D, et al. 2014. Mapping species distributions with Maxent using a geographically biased sample of presence data:a performance assessment of methods for correcting sampling bias. Plos One, 9(5):e97122. Gómez-Mendoza L, Arriaga L. 2007. Modeling the effect of climate change on the distribution of oak and pine species of Mexico. Conservation Biology, 21(6):1545-1555. Godown M E, Peterson A T. 2000. Preliminary distributional analysis of US endangered bird species. Biodiversity & Conservation, 9(9):1313-1322. Guisan A,Edwards T C,Hastie T.2002. Generalized linear and generalized additive models in studies of species distributions:setting the scene. Ecological Modelling, 157(2/3):89-100. Guisan A, Thuiller W. 2004. Predicting species distribution:offering more than simple habitat models. Ecology Letters, 8(9):993-1009. Hijmans R J,Cameron S E,Parra J L,et al. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25:1965-1978. Horgan T, Keane M, McCarthy R,et al. 2003. A guide to forest tree species selection and silviculture in Ireland. National Council for Forest Research and Development(Coford). Iverson L R, Schwartz M W, Prasad A M. 2004. Potential colonization of newly available tree-species habitat under climate change:an analysis for five eastern US species. Landscape Ecology, 19(7):787-799. Jarvis A, guarino L, Williams D, et al. 2002. Spatial analysis of wild peanut distributions and the implications for plant genetic resources conservation. Plant Genetic Resources Newsletter, 131(11):29-35. Leng W F, He H S, Bu R C,et al. 2008. Predicting the distributions of suitable habitat for three larch species under climate warming in northeastern China.Forest Ecology and Management, 254(3):420-428. Lobo J M, Jiménez-Valverde A, Hortal J.2010. The uncertain nature of absences and their importance in species distribution modelling.Ecography, 33(1):103-114. Märkel U, Dolos K. 2017. Tree species site suitability as a combination of occurrence probability and growth and derivation of priority regions for climate change adaptation. Forests, 8(6):181. Merow C, Smith M J, Silander J A. 2013. A practical guide to maxent for modeling species' distributions:what it does, and why inputs and settings matter. Ecography, 36(10):1058-1069. Metz C E. 1978. Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8(4):283-298. Phillips S J, Dudík M,Schapire R E,et al. 2004. A maximum entropy approach to species distribution modeling. Proceedings of the 21 International Conference on Machine Learning,Banff,Canada, 89-90. Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3/4):231-259. Phillips S J, Anderson R P, Dudík M, et al. 2017. Opening the black box:an open-source release of Maxent. Ecography, 40(7):887-893. Raxworthy C J, Martinezmeyer E, Horning N, et al. 2003. Predicting distributions of known and unknown reptile species in Madagascar. Nature, 426(6968):837-841. Stockwell D, Peters D. 1999. The GARP modelling system:problems and solutions to autom ated. International Journal of Geographical Information Science, 13(2):143-158. Wang X P, Fang J Y, Sanders N J, et al. 2009. Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography, 32(1):133-142. Walentowski H, Falk W, Mette T, et al. 2017. Assessing future suitability of tree species under climate change by multiple methods:a case study in southern Germany. Annals of Forest Research, 60(1):101-126. Wang S G, Dai Y, Liu B, et al. 2013. A China data set of soil properties for land surface modeling. Journal of Advances in Modeling Earth Systems, 5(2):212-224. Zhang M G, Ferry S J W, Ma K P. 2016. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China. Scientific Reports, 6:22400. |