Allwood J W, Ellis D I, Goodacre R. 2008. Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiol Plantarum, 132(2):117-135. Ates S, Ni Y, Akgul M,et al. 2008. Characterization and evaluation of Paulownia elongota as a raw material for paper production. Afr J Biotechnol, 7(22):4153-4158. Bayliss K L, Saqib M, Dell B,et al. 2005. First record of'Candidatus Phytoplasma australiense' in Paulownia trees. Australas Plant Path, (1):123-124. Berli F J, Moreno D, Piccoli P,et al. 2010. Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ, 33(1):1-10. Cao X B, Fan G Q, Deng M J,et al. 2014a. Identification of genes related to Paulownia witches' broom by AFLP and MSAP. Int J Mol Sci, 15(8):14669-14683. Cao X B, Fan G Q, Zhai X Q. 2012. Morphological changes of the witches' broom seedlings of Paulownia tomentosa treated with methyl methanesulphonate and SSR analysis. Acta Phytopathologica Sin, 42(2):214-218. [in Chniese] Cao X B, Fan G Q, Zhao Z L,et al. 2014b. Morphological changes of paulownia seedlings infected phytoplasmas reveal the genes associated with witches' broom through AFLP and MSAP. PLoS One, 9(10):e112533. DiLeo M V, Strahan G D, den Bakker M,et al. 2011. Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS One, 6(10):e26683. Durrant W E, Rowland O, Piedras P,et al. 2000. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. The Plant Cell Online, 12(6):963-977. Fan G Q, Dong Y P, Deng M J,et al. 2014. Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei. Int J Mol Sci, 15(12):23141-23162. Fan G Q, Zhang S, Zhai X Q,et al. 2007. Effects of antibiotics on the Paulownia witches' broom phytoplasmas and pathogenic protein related to witches' broom symptom. Sci Silv Sin, 43(3):138-142.[in Chniese] Gai Y P, Han X J, Li Y Q,et al. 2014. Metabolomic analysis reveals the potential metabolites and pathogenesis involved in mulberry yellow dwarf disease. Plant Cell Environ, 37(6):1474-1490. Gould K S, McKelvie J, Markham K R. 2002. Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ, 25(10):1261-1269. Hren M, Nikolic P, Rotter A,et al. 2009.'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics, 10(1):460. Hu J X, Tian G Z, Lin C L, et al. 2013. Cloning, expression and characterization of tRNA-isopentenyltransferase genes (tRNA-ipt) from paulownia witches'-broom phytoplasma. Acta Microbiologica Sinica, 53(8):832-841.[in Chniese] Ipekci Z, Gozukirmizi N. 2003. Direct somatic embryogenesis and synthetic seed production from Paulownia elongata. Plant Cell Rep, 22(1):16-24. Ji X, Gai Y P, Zheng C,et al. 2009. Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.). Proteomics, 9(23):5328-5339. Jin K X, Liang C J, Deng D L. 1981.A study of the insect vectors of witches' broom in Paulownia trees. Linye Keji Tongxun, (12): 23-24. Krall L, Huege J, Catchpole G,et al. 2009. Assessment of sampling strategies for gas chromatography-mass spectrometry (GC-MS) based metabolomics of cyanobacteria. J Chromatogr B, 877(27):2952-2960. Lee I M, Hammond R E, Davis R E,et al. 1993. Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology, 83(8):834-42. Liu L Y, Tseng H I, Lin C P, et al. 2014. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches'-broom phytoplasma infection. Plant Cell Physiol, 55(5):942-957. Liu R N, Dong Y P, Fan G Q,et al. 2013. Discovery of genes related to witches broom disease in Paulownia tomentosa×Paulownia fortunei by a De Novo assembled transcriptome. PLoS One, 8(11):e80238. Luan H, Chen X M, Zhong S L,et al. 2013. Serum metabolomics reveals lipid metabolism variation between coronary artery disease and congestive heart failure: a pilot study. Biomarkers, 18(4):314-321. Margaria P, Ferrandino A, Caciagli P, et al. 2014. Metabolic and transcript analysis of the flavonoid pathway in diseased and recovered Nebbiolo and Barbera grapevines (Vitis vinifera L.) following infection by Flavescence doree phytoplasma. Plant Cell Environ, 37(9):2183-2200. Moreau S, Fromentin J, Vailleau F,et al. 2014. The symbiotic transcription factor MtEFD and cytokinins are positively acting in the Medicago truncatula and Ralstonia solanacearum pathogenic interaction. New Phytol, 201(4):1343-1357. Mou H Q, Lu J, Zhu S F,et al. 2013. Transcriptomic analysis of Paulownia infected by Paulownia witches'-broom phytoplasma. PLoS One, 8(10):e77217. Namba S. 2002. Molecular biological studies on phytoplasmas.J Gen Plant Pathol, 68(3):257-259. Niu S Y, Fan G Q, Deng M J,et al. 2016. Discovery of microRNAs and transcript targets related to witches' broom disease in Paulownia fortunei by high-throughput sequencing and degradome approach. Mol Genet Genomics, 291(1):181-191. Orchard J, Collin H, Hardwick K,et al. 1994. Changes in morphology and measurement of cytokinin levels during the development of witches' brooms on cocoa. Plant Pathol, 43(1):65-72. Roessner U, Wagner C, Kopka J,et al. 2000. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J, 23(1):131-142. Rural Industry Business Services. 1998.Paulownia: a commercial overview. Queensland:Department of Primary Industries. Scarpari L M, Meinhardt L W, Mazzafera P,et al. 2005. Biochemical changes during the development of witches' broom: the most important disease of cocoa in Brazil caused by Crinipellis perniciosa. J exp bot, 56(413):865-877. Schneiderová K, Šmejkal K. 2015.Phytochemical profile of Paulownia tomentosa (Thunb). Steud Phytochem Rev, 14(5): 799-833. Sun Q, Zhou G, Sun H,et al. 2008. Effect of auxins on in vitro propagation of sour jujube infected by witches' broom phytoplasma. International Jujube Symposium, 840:303-308. Torres M A, Jones J D E, Dangl J F. 2006. Reactive oxygen species signalling in response to pathogens. Plant Physiol, 141(2):373-378. Ward J L, Baker J M, Beale M H. 2007. Recent applications of NMR spectroscopy in plant metabolomics. FEBS J, 274 (5):1126-1131. Wang J, Zhang X, Shi M,et al. 2014. Metabolomic analysis of the salt-sensitive mutants reveals changes in amino acid and fatty acid composition important to long-term salt stress in Synechocystis sp. PCC 6803. Funct Integr Genomic, 14(2):431-440. Want E J, Wilson I D, Gika H,et al. 2010. Global metabolic profiling procedures for urine using UPLC-MS. Nature Protocols, 5(6):1005-1018. Weintraub P G, Jones P. 2010. Phytoplasmas: genomes, plant hosts and vectors. Wallingford:CABI. Wilson I D, Plumb R, Granger J. 2005.HPLC-MS-based methods for the study of metabonomics. J Chromatogr B, 817(1):67-76. Xu S, Sun Y M, Jia Z C, et al. 2009. Effect of overexpression of IPT and KN1 on development and growth of transgenic tobacco plants. Plant Physiol Commun, 45(6):537-543. Zhang Y Z, Cao X B, Zhai X Q,et al. 2009. Study on DNA extraction of AFLP reaction system for Paulownia plants. J Henan Agric Univ, 43(6):610-614.[in Chinese] Zipfel C, Robatzek S. 2010.Pathogen-associated molecular pattern-triggered immunity: veni, vidi...? Plant Physiol, 154(2):551-554. |