唐丽荣, 黄 彪, 戴达松, 等. 2011. 纳米纤维素晶体的制备及表征. 林业科学, 47(9): 119-122. (Tang L R, Huang B, Dai D S, et al. 2011. Preparation and characterization of nanocrystal cellulose. Scientia Silvae Sinicae, 47(9): 119-122.[in Chinese]) 赵 煦, 刘志明, 张生义. 2012. 芦苇浆纳米纤维素的微波辅助酸水解制备优化. 广东化工, 39(14): 3-4. (Zhao X, Liu Z M, Zhang S Y. 2012. Optimization of microwave-assisted acid hydrolysis preparation of reed pulp nanocrystalline cellulose. Guangdong Chemical Industry, 39(14): 3-4.[in Chinese]) Bondeson D, Mathew A, Oksman K. 2006. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 13(2): 171-180. Brownson D A C, Kampouris D K, Banks C E. 2011. An overview of graphene in energy production and storage applications. Journal of Power Sources, 196(11): 4873-4885. Chae H K, Siberio-Pérez D Y, Kim J, et al. 2004. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 427(6974): 523-527. Chakraborty A, Sain M, Kortschot M. 2005. Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung, 59(1): 102-107. Chen J, Hamon M A, Hu H, et al. 1998. Solution properties of single-walled carbon nanotubes. Science, 282(5386): 95-98. Chen Y D, Wu Q M, Huang B, et al. 2013. Ultrasound-assisted one-pot synthesis of fispersable nano-MnO2 in the presence of nanocellulose. Advanced Materials Research, 634-638: 2318-2323. Eichhorn S J. 2011. Cellulose nanowhiskers promising materials for advanced applications. Soft Matter, 7(2): 303-315. Fukuzumi H, Saito T, Iwata T, et al. 2008. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 10(1): 162-165. Gao K, Shao Z, Li J, et al. 2013b. Cellulose nanofiber-graphene all solid-state flexible supercapacitors. Journal of Materials Chemistry A, 1(1): 63-67. Gao K, Shao Z, Wang X, et al. 2013a. Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. RSC Advances, 3(35): 15058-15064. Gao K, Shao Z, Wu X, et al. 2013c. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydrate Polymers, 97(1): 243-251. Hamedi M M, Hajian A, Fall A B, et al. 2014. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano, 8(3): 2467-2476. Heinze T, Petzold K. 2008. Cellulose chemistry: novel products and synthesis paths. Amsterdam: Elsevier, 28-32. Henriksson M, Henriksson G, Berglund L A, et al. 2007. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 43(8): 3434-3441. Hu L, Liu N, Eskilsson M, et al. 2013a. Silicon-conductive nanopaper for Li-ion batteries. Nano Energy, 2(1): 138-145. Hu L, Zheng G, Yao J, et al. 2013b. Transparent and conductive paper from nanocellulose fibers. Energy & Environmental Science, 6(2): 513-518. Ishii D, Saito T, Isogai A. 2011. Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 12(3): 548-550. Isogai A, Saito T, Fukuzumi H. 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale, 3(1): 71-85. Iwamoto S, Abe K, Yano H. 2008. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules, 9(3): 1022-1026. Janardhnan S, Sain M M. 2007. Isolation of cellulose microfibrils-an enzymatic approach. Bioresources, 1(2): 176-188. Kang E T, Neoh K G, Tan K L. 1998. Polyaniline: a polymer with many interesting intrinsic redox states. Progress in Polymer Science, 23(2): 277-324. Kang Y J, Chun S J, Lee S S, et al. 2012. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano, 6(7): 6400-6406. Klemm D, Heublein B, Fink H P, et al. 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22): 3358-3393. Klemm D, Kramer F, Moritz S, et al. 2011. Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition, 50(24): 5438-5466. Klemm D, Schumann D, Kramer F, et al. 2009. Nanocellulose materials-different cellulose, different functionality. Macromolecular symposia. WILEY-VCH Verlag, 280(1): 60-71. Koga H, Saito T, Kitaoka T, et al. 2013. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules, 14(4): 1160-1165. Korhonen J T, Hiekkataipale P, Malm J, et al. 2011. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. ACS Nano, 5(3): 1967-1974. Kumar D, Sharma R C. 1998. Advances in conductive polymers. European Polymer Journal, 34(8): 1053-1060. Lee C, Wei X, Kysar J W, et al. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887): 385-388. Li Z, Yao C, Yu Y, et al. 2014. Highly efficient capillary photoelectrochemical water splitting using cellulose nanofiber-templated TiO2 photoanodes. Advanced Materials, 26(14): 2262-2267. Liew S Y, Thielemans W, Walsh D A. 2010. Electrochemical capacitance of nanocomposite polypyrrole/cellulose films. The Journal of Physical Chemistry C, 114(41): 17926-17933. Luong N D, Pahimanolis N, Hippi U, et al. 2011. Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. Journal of Materials Chemistry, 21(36): 13991-13998. Malhotra B D, Chaubey A, Singh S P. 2006. Prospects of conducting polymers in biosensors. Analytica Chimica Acta, 578(1): 59-74. Moon R J, Martini A, Nairn J, et al. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7): 3941-3994. Nakagaito A N, Yano H. 2004. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Applied Physics A, 78(4): 547-552. Nogi M, Iwamoto S, Nakagaito A N, et al. 2009. Optically transparent nanofiber paper. Advanced Materials, 21(16): 1595-1598. Nyholm L, Nystrém G, Mihranyan A, et al. 2011. Toward flexible polymer and paper-based energy storage devices. Advanced Materials, 23(33): 3751-3769. Nystrém G, Mihranyan A, Razaq A, et al. 2010. A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. The Journal of Physical Chemistry B, 114(12): 4178-4182. Pääkké M, Ankerfors M, Kosonen H, et al. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6): 1934-1941. Pringle J M, Forsyth M, MacFarlane D R, et al. 2005. The influence of the monomer and the ionic liquid on the electrochemical preparation of polythiophene. Polymer, 46(7): 2047-2058. Razaq A, Nyholm L, Sjédin M, et al. 2012. Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Advanced Energy Materials, 2(4): 445-454. Rusli R, Shanmuganathan K, Rowan S J, et al. 2011. Stress transfer in cellulose nanowhisker composites influence of whisker aspect ratio and surface charge. Biomacromolecules, 12(4): 1363-1369. Saito T, Hirota M, Tamura N, et al. 2009. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules, 10(7): 1992-1996. Saito T, Kimura S, Nishiyama Y, et al. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 8(8): 2485-2491. Saito T, Nishiyama Y, Putaux J L, et al. 2006. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 7(6): 1687-1691. Sakurada I, Nukushina Y, Ito T. 1962. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. Journal of Polymer Science, 57(165): 651-660. Sasso C, Zeno E, Petit-Conil M, et al. 2010. Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromolecular Materials and Engineering, 295(10): 934-941. Saxena V, Malhotra B D. 2003. Prospects of conducting polymers in molecular electronics. Current Applied Physics, 3(2): 293-305. Schütz C, Sort J, Bacsik Z, et al. 2012. Hard and transparent films formed by nanocellulose-TiO2 nanoparticle hybrids. PloS One, 7(10): e45828. Stelte W, Sanadi A R. 2009. Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Industrial & Engineering Chemistry Research, 48(24): 11211-11219. Šturcová A, Davies G R, Eichhorn S J. 2005. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules, 6(2): 1055-1061. Tasis D, Tagmatarchis N, Bianco A, et al. 2006. Chemistry of carbon nanotubes. Chemical Reviews, 106(3): 1105-1136. Thiemann S, Sachnov S J, Pettersson F, et al. 2014. Cellulose-based ionogels for paper electronics. Advanced Functional Materials, 24(5): 625-634. Trojanowicz M. 2003. Application of conducting polymers in chemical analysis. Microchimica Acta, 143(2/3): 75-91. Valentini L, Cardinali M, Fortunati E, et al. 2013. A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Materials Letters, 105: 4-7. van den Berg O, Schroeter M, Capadona J R, et al. 2007. Nanocomposites based on cellulose whiskers and (semi) conducting conjugated polymers. Journal of Materials Chemistry, 17(26): 2746-2753. Wågberg L, Decher G, Norgren M, et al. 2008. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir, 24(3): 784-795. Wang L X, Li X G, Yang Y L. 2001. Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers, 47(2): 125-139. Wang M, Anoshkin I V, Nasibulin A G, et al. 2013. Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing. Advanced Materials, 25(17): 2428-2432. Wang Z, Tammela P, Zhang P, et al. 2014. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications. Nanoscale, 6(21): 13068-13075. Yan C, Wang J, Kang W, et al. 2014. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Advanced Materials, 26(13): 2022-2027. Zheng G, Cui Y, Karabulut E, et al. 2013. Nanostructured paper for flexible energy and electronic devices. MRS Bulletin, 38(4): 320-325. |