Scientia Silvae Sinicae ›› 2026, Vol. 62 ›› Issue (1): 144-155.doi: 10.11707/j.1001-7488.LYKX20240822
• Research papers • Previous Articles Next Articles
Haibin Wang1,Qinxing Shen1,Pengwei Ma2,Jiayin Song1,*(
)
Received:2024-12-31
Revised:2025-08-20
Online:2026-01-25
Published:2026-01-14
Contact:
Jiayin Song
E-mail:jiayin1980@126.com
CLC Number:
Haibin Wang,Qinxing Shen,Pengwei Ma,Jiayin Song. Fruit Ripeness Detection Method of Blueberry Based on Improved YOLOv9[J]. Scientia Silvae Sinicae, 2026, 62(1): 144-155.
Table 3
Results of ablation experiments"
| 模型 model | 精确率 Precision (%) | 召回率 Recall (%) | 平均精 度均值 Average precision mean (%) | 内存占用量 Memory usage/MB | 帧率Frame rate/ (fps·s–1) |
| YOLOv9 | 95.9 | 94.8 | 96.7 | 58.7 | 75.3 |
| YOLOv9M | 96.4 | 94.1 | 96.3 | 42.3 | 96.2 |
| YOLOv9G | 97.1 | 96.3 | 97.4 | 62.4 | 70.6 |
| YOLOv9W | 96.2 | 94.9 | 96.9 | 58.8 | 78.3 |
| YOLOv9MG | 97.3 | 95.8 | 97.6 | 46.6 | 84.4 |
| YOLOv9MW | 96.5 | 94.6 | 96.8 | 42.4 | 97.6 |
| YOLOv9GW | 96.9 | 96.0 | 97.2 | 62.6 | 72.5 |
| YOLOv9MGW | 98.0 | 97.2 | 98.2 | 46.8 | 86.5 |
Table 4
Comparison of the performance of different object detection models in the test set"
| 模型 model | 精确率 Precision (%) | 召回率 Recall (%) | 平均精度 均值 Mean average precision(%) | 内存占 用量 Memory usage/MB | 帧率 Frame rate/ (fps·s–1) |
| Faster R-CNN | 90.2 | 88.2 | 92.6 | 149.5 | 14.1 |
| SSD | 89.3 | 87.5 | 91.4 | 87.3 | 54.6 |
| YOLOv5 | 92.5 | 91.6 | 94.2 | 56.2 | 76.2 |
| YOLOv8 | 94.7 | 93.4 | 95.5 | 40.5 | 95.6 |
| YOLOv9 | 95.9 | 94.8 | 96.7 | 58.7 | 75.3 |
| YOLOv9MGW | 98.0 | 97.2 | 98.2 | 46.8 | 86.5 |
Table 5
Results of the blueberry harvesting experiment"
| 成熟果实比例 Mature fruit proportion(%) | 采摘装置转速 Harvesting device rotation speed/(r·min?1) | 采净率 Harvest efficiency(%) | 未成熟果实脱落率 Immature fruit drop rate(%) | 果实损伤率 Fruit damage rate(%) | 最佳转速 Optimal rotation speed/(r·min?1) |
| ≥90 | 120 | 97.2 | 1.94 | 1.36 | 125 |
| 125 | 98.4 | 2.15 | 1.48 | ||
| 130 | 98.7 | 2.40 | 1.62 | ||
| 85~90 | 125 | 97.5 | 2.20 | 1.60 | 130 |
| 130 | 98.3 | 2.32 | 1.72 | ||
| 135 | 98.6 | 2.56 | 1.85 | ||
| 80~85 | 135 | 98.0 | 2.40 | 1.86 | 140 |
| 140 | 98.3 | 2.60 | 2.02 | ||
| 145 | 98.5 | 2.78 | 2.24 |
| 鲍玉冬, 李志鹏, 郭艳玲, 等. 振动式蓝莓采摘机对果实收获的影响试验. 湖南农业大学学报(自然科学版), 2014, 40 (1): 96- 100. | |
| Bao Y D, Li Z P, Guo Y L, et al. Effects of vibrating based picking machine on blueberry fruit harvest. Journal of Hunan Agricultural University(Natural Sciences), 2014, 40 (1): 96- 100. | |
| 陈嘉瑶, 王 英, 梁冬泰, 等. 小型化轴向振动式蓝莓采摘机设计与试验. 机械设计, 2021, 38 (4): 37- 43. | |
| Chen J Y, Wang Y, Liang D T, et al. Design and experiment of the miniaturized axial-vibrating blueberry picker. Journal of Machine Design, 2021, 38 (4): 37- 43. | |
| 高友文, 周本君, 胡晓飞. 基于数据增强的卷积神经网络图像识别研究. 计算机技术与发展, 2018, 28 (8): 62- 65. | |
| Gao Y W, Zhou B J, Hu X F. Research on image recognition of convolution neural network based on data enhancement. Computer Technology and Development, 2018, 28 (8): 62- 65. | |
| 耿 雷, 郭艳玲, 王海滨. 高丛蓝莓采摘机采摘系统设计与试验. 农业机械学报, 2016, 47 (3): 67- 74. | |
| Geng L, Guo Y L, Wang H B. Picking system design and experiment for highbush blueberry picking machine. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47 (3): 67- 74. | |
| 郭艳玲, 聂宏宇, 李志鹏, 等. 蓝莓采摘实验台的设计与试验研究. 农机化研究, 2020, 42 (6): 130- 135,141. | |
| Guo Y L, Nie H Y, Li Z P, et al. Design and experimental study of blueberry picking experiment platform. Journal of Agricultural Mechanization Research, 2020, 42 (6): 130- 135,141. | |
| 李 茂, 肖洋轶, 宗望远, 等. 基于改进YOLOv8模型的轻量化板栗果实识别方法. 农业工程学报, 2024, 40 (1): 201- 209. | |
| Li M, Xiao Y Y, Zong W Y, et al. Detecting chestnuts using improved lightweight YOLOv8. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (1): 201- 209. | |
| 黎 鹏. 农业机械新技术的发展与应用研究. 南方农机, 2021, 52 (1): 66- 67. | |
| Li P. Research on the development and application of new technologies in agricultural machinery. China Southern Agricultural Machinery, 2021, 52 (1): 66- 67. | |
| 刘庆忠, 崔冬冬, 朱东姿. 世界及中国蓝莓产业现状. 落叶果树, 2024, 56 (4): 1- 7. | |
| Liu Q Z, Cui D D, Zhu D Z. Current situation of blueberry industry in the world and China. Deciduous Fruits, 2024, 56 (4): 1- 7. | |
| 刘拥民, 张 炜, 麻海志, 等. 基于注意力机制的轻量化YOLO v5s蓝莓检测算法. 河南农业科学, 2024, 53 (3): 151- 157. | |
| Liu Y M, Zhang W, Ma H Z, et al. Lightweight YOLO v5s blueberry detection algorithm based on attention mechanism. Journal of Henan Agricultural Sciences, 2024, 53 (3): 151- 157. | |
| 苗荣慧, 李港澳, 黄宗宝, 等. 基于YOLO v7-ST-ASFF的复杂果园环境下苹果成熟度检测方法. 农业机械学报, 2024, 55 (6): 219- 228. | |
| Miao R H, Li G, Huang Z B, et al. Maturity detection of apple in complex orchard environment based on YOLO v7-ST-ASFF. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55 (6): 219- 228. | |
| 徐 潺, 范 艳, 张成玉, 等. 适用于山地手持式电动蓝莓采摘机的研制. 农机化研究, 2021, 43 (12): 133- 137. | |
| Xu C, Fan Y, Zhang C Y, et al. Research and development of hand-held pure electric blueberry picker suitable for mountainous regions. Journal of Agricultural Mechanization Research, 2021, 43 (12): 133- 137. | |
| 詹国祥, 周立昶, 常国政, 等. 关于推进蓝莓收获机械化的思考. 江苏农机化, 2023, 5, 28- 29. | |
| Zhan G X, Zhou L C, Chang G Z, et al. Thoughts on promoting the mechanization of blueberry harvesting. Jiangsu Agricultural Mechanization, 2023, 5, 28- 29. | |
| 张惠莉, 代晨龙, 任景龙, 等. 2024. 基于GhostNetV2改进YOLO v8模型的葡萄病害识别方法研究. 农业机械学报, https://link.cnki.net/urlid/11.1964.S.20240827.0948.004. | |
| Zhang H L, Dai C L, Ren J L, et al. 2024. Research on grape disease identification method based on GhostNetV2 improved YOLO v8 model. Transactions of the Chinese Society for Agricultural Machinery, https://link.cnki.net/urlid/11.1964.S.20240827.0948.004. [in Chinese] | |
| 张文静, 赵性祥, 丁睿柔, 等. 基于Faster R-CNN算法的番茄识别检测方法. 山东农业大学学报(自然科学版), 2021, 52 (4): 624- 630. | |
| Zhang W J, Zhao X X, Ding R R, et al. Detection and recognition method for tomato on FasterR-CNN algorit. Journal of Shandong Agricultural University(Natural Science Edition), 2021, 52 (4): 624- 630. | |
| Du S, Zhang B, Zhang P, et al. An improved bounding box regression loss function based on CIOU Loss for Multi-scale object detection. IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML), 2021, 2021, 92- 98. | |
|
Gai R L, Chen N, Yuan H. A detection algorithm for cherry fruits based on the improved YOLO-v4 model. Neural Computing and Applications, 2023, 35 (19): 13895- 13906.
doi: 10.1007/s00521-021-06029-z |
|
|
Kalt W, Cassidy A, Howard L R, et al. Recent research on the health benefits of blueberries and their anthocyanins. Advances in Nutrition, 2020, 11 (2): 224- 236.
doi: 10.1093/advances/nmz065 |
|
|
Li S, Tao T, Zhang Y, et al. YOLO v7-CS: a YOLO v7-based model for lightweight bayberry target detection count. Agronomy, 2023b, 13 (12): 2952.
doi: 10.3390/agronomy13122952 |
|
|
Li Y D, Xue J X, Zhang M Y, et al. YOLOv5-ASFF: a multistage strawberry detection algorithm based on improved YOLOv5. Agronomy, 2023a, 13 (7): 1901.
doi: 10.3390/agronomy13071901 |
|
|
Lü X M, Wang H B, Xu G F, et al. Research on fruit picking test of blueberry harvesting machinery under transmission clearance. Heliyon, 2024, 10 (15): e34740.
doi: 10.1016/j.heliyon.2024.e34740 |
|
|
Qi E H. Enhanced classification of meat freshness using lightweight neural networks. BIO Web of Conferences, 2024, 124, 01019.
doi: 10.1051/bioconf/202412401019 |
|
| Qin D, Leichner C, Delakis M, et al. 2024. MobileNetV4: universal models for the mobile ecosystem. arXiv. https://arxiv.org/abs/2404.10518. | |
| Tan H C, Liu X P, Yin B C, et al. MHSA-Net: Multihead self-attention network for occluded person re-identification. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34 (11): 8210- 8224. | |
| Vo H T, Mui K C, Thien N N, et al. Automating tomato ripeness classification and counting with YOLOv9. International Journal of Advanced Computer Science and Applications, 2024, 15 (4): 1120- 1128. | |
|
Wang C Y, Wang C F, Wang L L, et al. A lightweight cherry tomato maturity real-time detection algorithm based on improved YOLOV5n. Agronomy, 2023, 13 (8): 2106.
doi: 10.3390/agronomy13082106 |
|
| Wang C Y, Yeh I H, Liao H Y M. 2024. YOLOv9: Learning what you want to learn using programmable gradient information. arXiv: 2402.13616. | |
|
Wu X, Liang J, Yang Y, et al. SAW-YOLO: a multi-scale YOLO for small target Citrus pests detection. Agronomy, 2024, 14 (7): 1571.
doi: 10.3390/agronomy14071571 |
|
| Xiao F, Wang H, Xu Y, et al. A lightweight detection method for blueberry fruit maturity based on an improved YOLOv5 algorithm. Agriculture, 2024, 14 (1): 36. | |
| Xu M L, Yoon S, Fuentes A, et al. Style-consistent image translation: a novel data augmentation paradigm to improve plant disease recognition. Pattern Recognition, 2023, 137, 3361. | |
|
Yang W, Ma X, Hu W, et al. Lightweight blueberry fruit recognition based on multi-scale and attention fusion NCBAM. Agronomy, 2022, 12 (10): 2354.
doi: 10.3390/agronomy12102354 |
|
|
Zhang H, Dong Z X, Li B, et al. Multi-scale MLP-mixer for image classification. Knowledge-Based Systems, 2022, 258, 109792.
doi: 10.1016/j.knosys.2022.109792 |
|
|
Zu L L, Zhao Y P, Liu J Q, et al. Detection and segmentation of mature green tomatoes based on mask R-CNN with automatic image acquisition approach. Sensors, 2021, 21 (23): 7842.
doi: 10.3390/s21237842 |
| [1] | Honghong Yu,Jiameng Yang. Forest Horizontal Ecological Compensation Strategy and Its Stability Based on Three-Party Evolutionary Game: a Case of Chongqing City [J]. Scientia Silvae Sinicae, 2025, 61(3): 214-232. |
| [2] | Hongge Zhu,Yuchen Tian,Wen Ying,Yutong Zhang. Evolutionary Game and Cooperation Mechanism of Forest Tourism Development in Key State-Owned Forest Areas [J]. Scientia Silvae Sinicae, 2025, 61(10): 221-235. |
| [3] | Yongli Zhu,Jie Zhang. Flowering and Pollination Biology of Cultivated Michelia chapensis in Shanghai [J]. Scientia Silvae Sinicae, 2024, 60(6): 86-93. |
| [4] | Ziyang Wang,Yuwu Xiong,Ying Yang,Yunlong Yin,Chaoguang Yu. Reproductive and Developmental Anatomical Characteristics during Cross Breeding between Taxodium mucronatum and Taxodium distichum [J]. Scientia Silvae Sinicae, 2023, 59(2): 96-106. |
| [5] | Dongbo Xie,Yakai Lei,Yuchao Zhang,Qingwang Liu,Liyong Fu,Qiao Chen. Estimation of Canopy Cover in the Core Area of Winter Olympic Games Based on Airborne LiDAR Data [J]. Scientia Silvae Sinicae, 2022, 58(10): 24-34. |
| [6] | Dongbo Xie,Qingwang Liu,Yakai Lei,Hang Yu,Xuping Yang,Liyong Fu. Suitability Analysis of Single Tree Segmentation Algorithm in the Core Area of Winter Olympic Games Based on Airborne LiDAR Data [J]. Scientia Silvae Sinicae, 2022, 58(10): 121-130. |
| [7] | Zhiyi Zhang,Lin Xin,Erfa Qiu,Xiaoyang Xie,Xinyu Wang,Zhenkai Sun,Shasha Jiang,Jiao Zhao. Scenic Beauty Estimation in Four Seasons of the Forest Belt along the Winter Olympics Expressway [J]. Scientia Silvae Sinicae, 2021, 57(12): 43-56. |
| [8] | Guangshuang Duan,Qiuyan Wang,Xinyu Song,Huiru Zhang,Liyong Fu. Relative Growth Relations between Height and Diameter of Individual Korean Pine under Competitive Environment [J]. Scientia Silvae Sinicae, 2020, 56(10): 105-112. |
| [9] | Liang Yan, Shen Hailong, Gao Meiling, Fan Zhenyu, Zhu Kun, Chen Yang, Zhang Peng, Yang Ling. Content Dynamics of Endogenous Hormones in Different Seed Developmental Stages of Korean Pine [J]. Scientia Silvae Sinicae, 2016, 52(3): 105-111. |
| [10] | Xu Gangbiao, Liu Xiongsheng, Liang Wenbin. Megasporogenesis, Female Gametophyte Development and Embryogenesis in Critically Endangered Glyptostrobus pensilis [J]. Scientia Silvae Sinicae, 2015, 51(6): 50-62. |
| [11] | Tang Yanping, Fang Guofei, Su Yuanda, Ding Yuzhou, Zhang Tie, Xie Fei, Wang Tongsheng. Control of Apriona germari by Radiation Sterility Technology [J]. Scientia Silvae Sinicae, 2014, 50(9): 180-183. |
| [12] | Sun Fengbo;Fei Benhua;Jiang Zehui;Cheng Haitao;Yu Zixuan;Chang Xiangzhen. Dynamic Viscoelastic Properties of γ Rays Treated Bamboo Strip in Different Temperatures [J]. Scientia Silvae Sinicae, 2012, 48(3): 160-163. |
| [13] | Lin Xinchun;Yuan Xiaoliang;Lin Rao;Lou Yongfeng;Fang Wei. Megasporogenesis and Female Gametophytes Development of Phyllostachys violascens [J]. Scientia Silvae Sinicae, 2010, 46(5): 55-57. |
| [14] | Wuyun Tana;;Li Hongguo;Li Zhenguo;Bao Meirong;Tan Xiaofeng;. Isolation and Genetic Polymorphism Analysis of Pear SFBB-γ Genes [J]. Scientia Silvae Sinicae, 2010, 46(1): 147-151. |
| [15] | Zhang Lin;Tan Xiaofeng;Hu Jiao;Wuyun Tana;Yuan Deyi;He Xiaoyong;Long Hongxu;Li Xiugen. Molecular Cloning and Characterization of PbSFBB13-gamma from Chinese White Pear (Pyrus bretschneideri) [J]. Scientia Silvae Sinicae, 2009, 12(11): 36-43. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||