Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (5): 187-198.doi: 10.11707/j.1001-7488.LYKX20240387
• Research papers • Previous Articles Next Articles
Xiaoman Wang1,Jianxiong Lü2,Xianjun Li1,Yiqiang Wu1,Xingong Li1,Xiaofeng Hao1,Jianzheng Qiao1,Kang Xu1,*()
Received:
2024-06-22
Online:
2025-05-20
Published:
2025-05-24
Contact:
Kang Xu
E-mail:xkang86@126.com
CLC Number:
Xiaoman Wang,Jianxiong Lü,Xianjun Li,Yiqiang Wu,Xingong Li,Xiaofeng Hao,Jianzheng Qiao,Kang Xu. Prediction of Moisture Content during Drying of Phenolic Resin Impregnated Heat-Treated Bamboo Bundles Based on PSO-BP Neural Network Modeling[J]. Scientia Silvae Sinicae, 2025, 61(5): 187-198.
Table 1
The linear regression between actual values and predicted values"
组别 Groups | 线性回归方程 Linear regression equation | 相关系数Correlation coefficient (R) | |||
BP | PSO-BP | BP | PSO-BP | ||
训练集Training set | Y=0.93T+0.001 2 | Y=0.98T+0.003 7 | 0.964 | 0.992 | |
验证集Validation set | Y=0.89T+0.006 2 | Y=0.95T+0.015 0 | 0.942 | 0.976 | |
测试集Test set | Y=0.95T+0.019 0 | Y=0.98T+0.010 0 | 0.975 | 0.989 | |
总数据集All data set | Y=0.92T+0.023 0 | Y=0.98T+0.006 2 | 0.964 | 0.988 |
Table 3
Correlation analysis between the actual values and the predicted values of moisture content generated by the PSO-BP neural network model for PHB"
编号 Number | 干燥温度 Drying temperature/℃ | 铺装方式 Paving method | R2 | MSE |
1 | 50 | P1 | 0.990 | 1.26 |
2 | P3 | 0.994 | 0.53 | |
3 | P6 | 0.967 | 1.19 | |
4 | P12 | 0.958 | 2.92 | |
5 | 60 | P1 | 0.994 | 1.14 |
6 | P3 | 0.992 | 1.16 | |
7 | P6 | 0.969 | 2.58 | |
8 | P12 | 0.969 | 2.59 | |
9 | 70 | P1 | 0.950 | 3.24 |
10 | P3 | 0.998 | 0.08 | |
11 | P6 | 0.992 | 0.55 | |
12 | P12 | 0.993 | 1.71 | |
13 | 80 | P1 | 0.944 | 3.78 |
14 | P3 | 0.996 | 0.52 | |
15 | P6 | 0.973 | 2.18 | |
16 | P12 | 0.961 | 2.27 |
付立岩, 冯国红, 刘旭铭. 基于多元经验模态分解的可见/近红外光谱识别木材研究. 森林工程, 2023, 39 (4): 101- 109. | |
Fu L Y, Feng G H, Liu X M. Wood recognition by visible/near infrared spectroscopy based on multivariate empirical mode decomposition. Forest Engineering, 2023, 39 (4): 101- 109. | |
付宗营, 蔡英春, 高 鑫, 等. 基于人工神经网络模型的木材干燥应变模拟预测. 林业科学, 2020, 56 (6): 76- 82. | |
Fu Z Y, Cai Y C, Gao X, et al. Simulation of drying strain based on artificial neural network model. Scientia Silvae Sinicae, 2020, 56 (6): 76- 82. | |
贺春光, 李璐芳, 高 峰, 等. 基于核主成分分析的GSA-SVM木材单板缺陷识别研究. 森林工程, 2023, 39 (2): 91- 99. | |
He C G, Li L F, Gao F, et al. Study on GSA-SVM wood veneer defect identification based on kernel principal component analysis. Forest Engineering, 2023, 39 (2): 91- 99. | |
齐 越, 吴江源, 任丁华, 等. 重组竹制造与应用技术研究进展. 林业科学, 2023, 59 (6): 159- 168.
doi: 10.11707/j.1001-7488.LYKX20210665 |
|
Qi Y, Wu J Y, Ren D H, et al. The development in manufacture and application technology of bamboo scrimber. Scientia Silvae Sinicae, 2023, 59 (6): 159- 168.
doi: 10.11707/j.1001-7488.LYKX20210665 |
|
汤 赛, 迟 祥, 宋晓雪, 等. 空气能辅助太阳能干燥过程中“闷窑”工艺对杨木干燥效能的影响. 森林工程, 2023, 39 (3): 107- 115,149. | |
Tang S, Chi X, Song X X, et al. Effect of “stuffy kiln” process on drying characteristics of poplar during air energy assisted solar drying. Forest Engineering, 2023, 39 (3): 107- 115,149. | |
田心池, 于文吉, 马红霞, 等. 重组竹制备过程中温度场变化规律与预测模型. 林业工程学报, 2023, 8 (1): 38- 45. | |
Tian X C, Yu W J, Ma H X, et al. Variation law of temperature field and prediction model in the preparation of bamboo scrimber. Journal of Forestry Engineering, 2023, 8 (1): 38- 45. | |
吴舒辞, 刘 帅, 李建军, 等. 毛竹导热系数非线性拟合的PSO-BP模型. 林业科学, 2012, 48 (11): 87- 91.
doi: 10.11707/j.1001-7488.20121114 |
|
Wu S C, Liu S, Li J J, et al. A PSO-BP model for nonlinear fitting of Phyllostachys edulis’ thermal conductivity. Scientia Silvae Sinicae, 2012, 48 (11): 87- 91.
doi: 10.11707/j.1001-7488.20121114 |
|
徐 康, 吕建雄, 刘君良, 等. 浸渍后处理及干燥处理对木材树脂浸渍改性效果的影响. 林业科学, 2018, 54 (4): 84- 92.
doi: 10.11707/j.1001-7488.20180410 |
|
Xu K, Lü J X, Liu J L, et al. Influence of post-treatment and drying process on the modification of wood with resin-impregnation. Scientia Silvae Sinicae, 2018, 54 (4): 84- 92.
doi: 10.11707/j.1001-7488.20180410 |
|
徐 康, 张晓萌, 李中昊, 等. 木材低分子量树脂浸渍改性与干燥研究进展. 材料导报, 2022, 36 (6): 223- 229. | |
Xu K, Zhang X M, Li Z H, et al. Research progress of wood low molecular weight resin impregnation modification and its drying. Materials Reports, 2022, 36 (6): 223- 229. | |
于文吉. 我国重组竹产业发展现状与机遇. 世界竹藤通讯, 2019, 17 (3): 1- 4. | |
Yu W J. Current situation and opportunities for the development of bamboo scrimber industry in China. World Bamboo and Rattan, 2019, 17 (3): 1- 4. | |
于子绚. 2012. 竹束单板层积材制造工艺及应用性能研究. 北京: 中国林业科学研究院. | |
Yu Z X. 2012. Processing technology of laminated bamboo-bundle veneer lumber and its application performance. Beijing: Chinese Academy of Forestry. [in Chinese] | |
周世玉, 杜光月, 褚 鑫, 等. 地采暖木地板释热温度场的BP神经网络预测. 林业科学, 2018, 54 (11): 158- 163.
doi: 10.11707/j.1001-7488.20181122 |
|
Zhou S Y, Du G Y, Chu X, et al. Prediction of thermal released field by the wood flooring for ground with heating system based on BP network. Scientia Silvae Sinicae, 2018, 54 (11): 158- 163.
doi: 10.11707/j.1001-7488.20181122 |
|
Chai H J, Li L. Prediction of wood drying process based on artificial neural network. BioResources, 2023, 18 (4): 8212- 8222.
doi: 10.15376/biores.18.4.8212-8222 |
|
Chao Z M, Li Z K, Dong Y K, et al. Estimating compressive strength of coral sand aggregate concrete in marine environment by combining physical experiments and machine learning-based techniques. Ocean Engineering, 2024, 308, 118320.
doi: 10.1016/j.oceaneng.2024.118320 |
|
Chen M L, Semple K, Hu Y A, et al. Fundamentals of bamboo scrimber hot pressing: mat compaction and heat transfer process. Construction and Building Materials, 2024, 412, 134843.
doi: 10.1016/j.conbuildmat.2023.134843 |
|
Ge Y L, Lu T, Li X G, et al. Changes in temperature and vapor-pressure behavior of bamboo scrimber in response to hot-pressing parameters. Forests, 2024, 15 (4): 620.
doi: 10.3390/f15040620 |
|
Haftkhani A R, Abdoli F, Sepehr A, et al. Regression and ANN models for predicting MOR and MOE of heat-treated fir wood. Journal of Building Engineering, 2021, 42, 102788.
doi: 10.1016/j.jobe.2021.102788 |
|
Huang Y, Xiang Y X, Zhao R X, et al. Air quality prediction using improved PSO-BP neural network. IEEE Access, 2020, 8, 99346- 99353.
doi: 10.1109/ACCESS.2020.2998145 |
|
Kadivar M, Gauss C, Mármol G, et al. The influence of the initial moisture content on densification process of D. asper bamboo: physical-chemical and bending characterization. Construction and Building Materials, 2019, 229, 116896.
doi: 10.1016/j.conbuildmat.2019.116896 |
|
Liang E S, Chen C F, Tu D Y, et al. Highly efficient preparation of bamboo scrimber: drying process optimization of bamboo bundles and its effect on the properties of bamboo scrimber. European Journal of Wood and Wood Products, 2022, 80 (6): 1473- 1484.
doi: 10.1007/s00107-022-01821-7 |
|
Liang E S, Lin X Y, He J Q, et al. Bamboo scrimber production: optimization of post-impregnation drying process using a heat pump dryer. Wood Material Science & Engineering, 2024, 19 (1): 182- 188. | |
Liang E S, Zhou Q F, Lin X Y, et al. Feasibility of one-time drying for manufacturing bamboo scrimber: fresh bamboo bundle at high initial moisture content impregnated by PF. Industrial Crops and Products, 2023, 194, 116302.
doi: 10.1016/j.indcrop.2023.116302 |
|
Liu X, Liu Z, Liang Z W, et al. PSO-BP neural network-based strain prediction of wind turbine blades. Materials, 2019, 12 (12): 1889.
doi: 10.3390/ma12121889 |
|
Lu T, Ge Y L, Zhou C F, et al. Effects of physical parameters on the temperature and vapor-pressure behavior of bamboo scrimber during hot-pressing. Wood Material Science & Engineering, 2023, 18 (5): 1641- 1649. | |
Ma W, Wang W, Cao Y. Mechanical properties of wood prediction based on the NAGGWO-BP neural network. Forests, 2022, 13 (11): 1870.
doi: 10.3390/f13111870 |
|
Mo J, Tamboli D, Haviarova E. Prediction of the color change of surface thermally treated wood by artificial neural network. European Journal of Wood and Wood Products, 2023, 81 (5): 1135- 1146.
doi: 10.1007/s00107-023-01969-w |
|
Nasir V, Nourian S, Zhou Z, et al. Classification and characterization of thermally modified timber using visible and near-infrared spectroscopy and artificial neural networks: a comparative study on the performance of different NDE methods and ANNs. Wood Science and Technology, 2019, 53 (5): 1093- 1109.
doi: 10.1007/s00226-019-01120-0 |
|
Nikoo M, Abbasi Malekabadi R, Hafeez G. Estimating the mechanical properties of heat-treated woods using optimization algorithms-based ANN. Measurement, 2023, 207, 112354.
doi: 10.1016/j.measurement.2022.112354 |
|
Ozturk H, Demir A, Demirkir C. Optimization of pressing parameters for the best mechanical properties of wood veneer/polystyrene composite plywood using artificial neural network. European Journal of Wood and Wood Products, 2022, 80 (4): 907- 922.
doi: 10.1007/s00107-022-01818-2 |
|
Pineda H, Hu Y A, Semple K, et al. Computer simulation of the mat formation of bamboo scrimber composites. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106542.
doi: 10.1016/j.compositesa.2021.106542 |
|
Shi L, Chew M Y L. A review of thermal properties of timber and char at elevated temperatures. Indoor and Built Environment, 2023, 32 (1): 9- 24.
doi: 10.1177/1420326X211035557 |
|
Song S S, Qiao J Z, Hao X F, et al. 2024. Effect of drying temperature on the curing properties of phenolic resin-impregnated heat-treated bamboo bundles. Wood Material Science & Engineering, https://doi.org/10.1080/17480272.2024.2344019. | |
Tao W Z, Jiang F, Li L, et al. Dynamical analysis and vibration estimation of a flexible plate with enhanced active constrained layer damping treatment by combinatorial neural networks of surrogates. Aerospace Science and Technology, 2023, 133, 108136.
doi: 10.1016/j.ast.2023.108136 |
|
Tseng T Y, Luo Q L. Company employee quality evaluation model based on BP neural network. Journal of Intelligent & Fuzzy Systems, 2021, 40 (4): 5883- 5892. | |
Wang C H, Zhao Q G, Tian R. Short-term wind power prediction based on a hybrid Markov-based PSO-BP neural network. Energies, 2023, 16 (11): 4282.
doi: 10.3390/en16114282 |
|
Wang L H, Li L, Qi W, et al. Pattern recognition and size determination of internal wood defects based on wavelet neural networks. Computers and Electronics in Agriculture, 2009, 69 (2): 142- 148.
doi: 10.1016/j.compag.2009.07.019 |
|
Wei W H, Shang Y Y, Peng Y, et al. Prediction model of sound signal in high-speed milling of wood-plastic composites. Materials, 2022, 15 (11): 3838.
doi: 10.3390/ma15113838 |
|
Wurzberger F, Schwenker F. Learning in deep radial basis function networks. Entropy, 2024, 26 (5): 368.
doi: 10.3390/e26050368 |
|
Xu K, Yuan S F, Gao Y L, et al. Characterization of moisture states and transport in MUF resin-impregnated poplar wood using low field nuclear magnetic resonance. Drying Technology, 2021, 39 (6): 791- 802.
doi: 10.1080/07373937.2020.1719503 |
|
Zhang Y M, Zhu Y D, Li Z R, et al. Temperature-dependent structural properties of water molecules confined in TiO2 nanoslits: insights from molecular dynamics simulations. Fluid Phase Equilibria, 2016, 430, 169- 177.
doi: 10.1016/j.fluid.2016.10.002 |
[1] | Jiandong Qi,Shangzi Zheng,Ziyi Chen,Zhongtian Ma. Wildlife Image Recognition of Infrared Cameras in Beijing Area Based on an Improvement ConvNeXt Model [J]. Scientia Silvae Sinicae, 2024, 60(8): 33-45. |
[2] | Bingnan Chen,Fengting Yang,Shengwang Meng,Xiaoqin Dai,Liang Kou,Yifan Chen,Huimin Wang,Xiaoli Fu. Temporal-Spatial Variation and Drivers of Phenology in Pinus massoniana and Pinus elliottii Forests in Hilly Regions with Red Soil [J]. Scientia Silvae Sinicae, 2024, 60(8): 67-78. |
[3] | Shihao Zhu,Zhiwei Wu,Zhengjie Li,Shun Li. Moisture Dynamics and Modeling of Ground Surface Fine Dead Combustibles in Pinus massoniana Forest in Southern Jiangxi, China [J]. Scientia Silvae Sinicae, 2024, 60(5): 158-168. |
[4] | Jingyi Xu,Zhi Zhang,Fei Yan,Wenyue Zhang. Leaf Identification Based on GAN-DCNN [J]. Scientia Silvae Sinicae, 2024, 60(4): 40-51. |
[5] | Juanhong Zhao,Juanjuan Mi,Zhigang Li,Han Bao,Ting Huang,Ken Qin,Juan Yang,Guoqi Zheng. Effects of Lycium barbarum Fruit Characteristics and Pretreatment on the Fruit Drying [J]. Scientia Silvae Sinicae, 2024, 60(3): 35-44. |
[6] | Su Tong, Xu Jie. Tree Species Identification Method Based on Generative Adversarial Network [J]. Scientia Silvae Sinicae, 2024, 60(2): 97-105. |
[7] | Xi Pan,Kang Li,Zhong Yang. Wood Species Identification through Fusion of NIR Spectroscopy and Digital Image Features Information Using Convolutional Neural Networks [J]. Scientia Silvae Sinicae, 2024, 60(12): 136-145. |
[8] | Ye Sheng,Genglang Huang,Xiaofan Ye,Feiyu Liao,Wenbin Yang. Effects of Density and Moisture Content on the Tensile Strength Parallel to Grain of Bamboo Scrimber [J]. Scientia Silvae Sinicae, 2024, 60(10): 116-121. |
[9] | Zhouzhou Ouyang,Yiqiang Wu,Tao Tao,Feng Cai,Xun Wang,Shaoping Hao. Prediction Model of Operation Time in Numerical Control Drilling of Custom Furniture Parts [J]. Scientia Silvae Sinicae, 2024, 60(1): 120-128. |
[10] | Jiandong Qi,Zhongtian Ma,Dehuai Zhang,Yun Tian. Wildlife Image Recognition in Miyun District Based on BS-ResNeXt-50 [J]. Scientia Silvae Sinicae, 2023, 59(8): 112-122. |
[11] | Yujie Miao,Shiping Zhu,Jing Pu,Junxian Li,Lingkai Ma,Hua Huang. Recognition of Furniture Wood Image Species Based on Convolutional Neural Networks [J]. Scientia Silvae Sinicae, 2023, 59(8): 133-140. |
[12] | Quanfei Huang,Yanhui Huang,Ying Liu,Xinyu Lin. Preparation and Finishing Properties of Environmentally-Friendly and Fast-Drying Wood Wax Oil [J]. Scientia Silvae Sinicae, 2023, 59(7): 137-144. |
[13] | Yingwu Mao,Ying Guo,Wangfei Zhang,Yong Su,Yuan Guan. Tree Species Classification by Combining LiDAR, Hyperspectral Data and 3D-CNN Method [J]. Scientia Silvae Sinicae, 2023, 59(3): 73-83. |
[14] | Jiali Lü,Dengyun Tu,Chuanshuang Hu,Xianju Wang,Qingwen Wang,Qiaofang Zhou. Measurement of Wood Moisture Content Distribution by X-Ray Method Based on Control Volume Shrinkage Model [J]. Scientia Silvae Sinicae, 2023, 59(11): 76-84. |
[15] | Qigang Xu,Xiangdong Lei,Yu Zheng,Xingguo Hu,Yuancai Lei,xiao He. A New Activation Function Based on Richards Equation for Tree Height-Diameter Deep Neural Network Model of Abies nephrolepis [J]. Scientia Silvae Sinicae, 2023, 59(10): 50-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||