Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (5): 199-206.doi: 10.11707/j.1001-7488.LYKX20240377
• Research papers • Previous Articles Next Articles
Ya Zhu,Xizhi Wu*(),Yuanshuo Huang
Received:
2024-06-20
Online:
2025-05-20
Published:
2025-05-24
Contact:
Xizhi Wu
E-mail:wuxizhi2006@126.com
CLC Number:
Ya Zhu,Xizhi Wu,Yuanshuo Huang. Visual Detection Method of Wood Sanding Surface Roughness Based on Local Autocorrelation Function Entropy[J]. Scientia Silvae Sinicae, 2025, 61(5): 199-206.
Table 2
Experimental results of measuring wood sanding surface roughness and image feature calculation results"
试件序号 No. | 砂带目数 Granularity | 砂带速度 Belt speed/(m?s?1) | 气鼓轮进给量 Air drum feed rate/mm | 平均值 Mean/μm | 标准差 SD/μm | 局部自相关函数熵 LAEnt | 自相关函数熵 AEnt |
1 | 240 | 2.75 | 0.5 | 5.355 | 0.131 | 7.049 | 2.209 |
2 | 240 | 2.75 | 0.5 | 5.443 | 0.127 | 6.953 | 2.271 |
3 | 240 | 2.75 | 0.5 | 5.174 | 0.158 | 7.060 | 2.146 |
4 | 240 | 5.49 | 1.0 | 4.984 | 0.317 | 7.013 | 2.536 |
5 | 240 | 5.49 | 1.0 | 5.346 | 0.210 | 7.205 | 2.159 |
6 | 240 | 5.49 | 1.0 | 5.108 | 0.131 | 7.088 | 2.062 |
7 | 240 | 8.24 | 1.5 | 5.096 | 0.147 | 7.051 | 1.824 |
8 | 240 | 8.24 | 1.5 | 4.491 | 0.154 | 6.726 | 2.186 |
9 | 240 | 8.24 | 1.5 | 4.751 | 0.081 | 6.767 | 1.998 |
10 | 320 | 2.75 | 1.0 | 3.920 | 0.061 | 6.594 | 2.144 |
11 | 320 | 2.75 | 1.0 | 3.934 | 0.138 | 6.387 | 1.990 |
12 | 320 | 2.75 | 1.0 | 4.170 | 0.094 | 6.637 | 2.026 |
13 | 320 | 5.49 | 1.5 | 3.939 | 0.215 | 6.450 | 2.267 |
14 | 320 | 5.49 | 1.5 | 4.106 | 0.173 | 6.556 | 2.210 |
15 | 320 | 5.49 | 1.5 | 3.826 | 0.091 | 6.390 | 2.512 |
16 | 320 | 8.24 | 0.5 | 4.050 | 0.124 | 6.639 | 1.937 |
17 | 320 | 8.24 | 0.5 | 3.616 | 0.256 | 6.383 | 2.429 |
18 | 320 | 8.24 | 0.5 | 3.882 | 0.341 | 6.501 | 1.820 |
19 | 400 | 2.75 | 1.5 | 3.700 | 0.194 | 6.427 | 1.759 |
20 | 400 | 2.75 | 1.5 | 3.703 | 0.113 | 6.511 | 1.534 |
21 | 400 | 2.75 | 1.5 | 3.654 | 0.173 | 6.413 | 1.515 |
22 | 400 | 5.49 | 0.5 | 3.441 | 0.128 | 6.376 | 1.674 |
23 | 400 | 5.49 | 0.5 | 2.902 | 0.036 | 6.242 | 1.602 |
24 | 400 | 5.49 | 0.5 | 3.324 | 0.195 | 6.319 | 1.737 |
25 | 400 | 8.24 | 1.0 | 3.222 | 0.238 | 6.253 | 1.381 |
26 | 400 | 8.24 | 1.0 | 2.836 | 0.034 | 6.067 | 1.565 |
27 | 400 | 8.24 | 1.0 | 2.634 | 0.139 | 6.071 | 2.512 |
卜祥鹏, 张 树, 皮 磊, 等. 表面粗糙度国际比对自动测量系统关键技术研究. 计量学报, 2022, 43 (7): 844- 850.
doi: 10.3969/j.issn.1000-1158.2022.07.02 |
|
Bu X P, Zhang S, Pi L, et al. Research on the key technology of the automatic measurement system for surface roughness international comparison. Acta Metrologica Sinica, 2022, 43 (7): 844- 850.
doi: 10.3969/j.issn.1000-1158.2022.07.02 |
|
曹欢玲, 李延军, 侯英岢. 木材切削表面粗糙度的分形表征. 木材加工机械, 2015, (2): 8- 10. | |
Cao H L, Li Y J, Hou Y K. Fractal characterization of the wood surface roughness. Wood Processing Machinery, 2015, (2): 8- 10. | |
何宝凤, 丁思源, 魏翠娥, 等. 2019. 三维表面粗糙度测量方法综述. 光学 精密工程, 27(1): 78−93. | |
He B F, Ding S Y, Wei C E, et al. 2019. Review of measurement methods for areal surface roughness. Optics and Precision Engineering, 27(1): 78−93. [in Chinese] | |
黄 云. 砂带磨削技术的研究现状和发展方向简介. 金刚石与磨料磨具工程, 2020, 40 (3): 1- 4.
doi: 10.3969/j.issn.1006-852X.2020.03.001 |
|
Huang Y. Brief introduction of research status and development direction of belt grinding technology. Diamond & Abrasives Engineering, 2020, 40 (3): 1- 4.
doi: 10.3969/j.issn.1006-852X.2020.03.001 |
|
贾 娜, 郭佳欣, 花 军, 等. 采用支持向量机算法对金刚石锯片锯切木材表面粗糙度的预测. 东北林业大学学报, 2019a, 47 (10): 85- 89, 100. | |
Jia N, Guo J X, Hua J, et al. Prediction model of surface roughness of PCD sawing wood with SVM. Journal of Northeast Forestry University, 2019a, 47 (10): 85- 89, 100. | |
贾 娜, 郭佳欣, 温潍齐, 等. 应用改进差分盒维数法对木材表面粗糙度的三维表征. 东北林业大学学报, 2019b, 47 (9): 76- 80. | |
Jia N, Guo J X, Wen W Q, et al. Three-dimensional characterization of wood surface roughness with improved differential box-counting. Journal of Northeast Forestry University, 2019b, 47 (9): 76- 80. | |
李晓旭, 陈永光, 李 黎. 木质材料砂带磨削的若干问题. 木材加工机械, 2010, (3): 44- 48, 43.
doi: 10.3969/j.issn.1001-036X.2010.03.011 |
|
Li X X, Chen Y G, Li L. Abrasive belt sanding technology of wood-based panel. Wood Processing Machinery, 2010, (3): 44- 48, 43.
doi: 10.3969/j.issn.1001-036X.2010.03.011 |
|
路恩会, 郭耀村, 李世雯, 等. 基于全参考彩色图像质量算法的磨削表面粗糙度测量. 仪器仪表学报, 2023, 44 (7): 252- 259. | |
Lu E H, Guo Y C, Li S W, et al. Measurement of grinding surface roughness based on the full-reference color image quality algorithm. Chinese Journal of Scientific Instrument, 2023, 44 (7): 252- 259. | |
青 龙, 邢 东, 王喜明, 等. 木材切削表面粗糙度研究进展及测定方法探讨. 林产工业, 2021, 58 (2): 27- 30. | |
Qing L, Xing D, Wang X M, et al. Discussion and research progress about determination method of wood cutting surface roughness. China Forest Products Industry, 2021, 58 (2): 27- 30. | |
申婷文, 孙亚楠, 刘一楠, 等. 单板贴面木粉/高密度聚乙烯复合材制备及表面胶合性能. 林业工程学报, 2020, 5 (4): 101- 107. | |
Shen T W, Sun Y N, Liu Y N, et al. Study on preparation and adhesion property of veneer overlaid wood flour/high density polyethylene composites. Journal of Forestry Engineering, 2020, 5 (4): 101- 107. | |
王 晗, 王克奇, 白雪冰, 等. 基于分形维木材表面粗糙度的研究. 森林工程, 2007, 23 (2): 13- 15.
doi: 10.3969/j.issn.1001-005X.2007.02.004 |
|
Wang H, Wang K Q, Bai X B, et al. The research of wood surface roughness based on fractal dimension. Forest Engineering, 2007, 23 (2): 13- 15.
doi: 10.3969/j.issn.1001-005X.2007.02.004 |
|
韦 旭, 潘谊春, 韩 俊, 等. 基于自相关函数三维熵的雷达信号分选. 雷达科学与技术, 2017, 15 (6): 593- 599, 616.
doi: 10.3969/j.issn.1672-2337.2017.06.004 |
|
Wei X, Pan Y C, Han J, et al. Radar signal sorting based on three dimensional entropy features of autocorrelation function. Radar Science and Technology, 2017, 15 (6): 593- 599, 616.
doi: 10.3969/j.issn.1672-2337.2017.06.004 |
|
谢炳生. 2023. 基于机器视觉的铣削加工表面粗糙度实时检测方法研究. 湛江: 广东海洋大学. | |
Xie B S. 2023. Research on real-time measuring methods for surface roughness in milling process based on machine vision. Zhanjiang: Guangdong Ocean University. [in Chinese] | |
徐 锦, 芈聪慧, 迟文锐, 等. 基于酸性红染料的杨木单板高色牢度常温染色. 森林工程, 2023, 39 (6): 81- 87. | |
Xu J, Mi C H, Chi W R, et al. High color fastness dyeing of poplar veneer at normal temperature based on acid red dye. Forest Engineering, 2023, 39 (6): 81- 87. | |
杨 悦, 赵英亮. 基于改进GLCM和Tamura特征的工件表面粗糙度检测. 现代电子技术, 2023, 46 (9): 66- 72. | |
Yang Y, Zhao Y L. Workpiece surface roughness detection based on improved GLCM and Tamura features. Modern Electronics Technique, 2023, 46 (9): 66- 72. | |
易怀安, 赵欣佳, 唐 乐, 等. 基于彩色图像奇异值熵指标的磨削表面粗糙度视觉测量方法. 中国机械工程, 2021, 32 (13): 1577- 1583. | |
Yi H A, Zhao X J, Tang L, et al. Vision measurement method for ground surface roughness based on color image singular value entropy index. China Mechanical Engineering, 2021, 32 (13): 1577- 1583. | |
朱培琦, 何 鑫, 陈松阳, 等. 云南 50 种针叶材表面视觉特性和细胞结构对总色差的影响. 森林工程, 2023, 39 (3): 91- 99. | |
Zhu P Q, He X, Chen S Y, et al. Surface visual characteristics and the effect of cell structure on the total color difference of 50 species of softwood in Yunnan Province. Forest Engineering, 2023, 39 (3): 91- 99. | |
Darmawan W, Ginting M B, Gayatri A, et al. Influence of surface roughness of ten tropical woods species on their surface free energy, varnishes wettability and bonding quality. Pigment & Resin Technology, 2020, 49 (6): 441- 447. | |
Joshi K, Patil B. Prediction of surface roughness by machine vision using principal components based regression analysis. Procedia Computer Science, 2020, 167, 382- 391.
doi: 10.1016/j.procs.2020.03.242 |
|
Luo B, Zhang J, Bao X, et al. The effect of granularity on surface roughness and contact angle in wood sanding process. Measurement, 2020, 165, 108133.
doi: 10.1016/j.measurement.2020.108133 |
|
Stanojevic D, Mandic M, Danon G, et al. Prediction of the surface roughness of wood for machining. Journal of Forestry Research, 2017, 28 (6): 1281- 1283.
doi: 10.1007/s11676-017-0401-z |
|
Tiryaki S, Malkoçoğlu A, Özşahin Ş. Using artificial neural networks for modeling surface roughness of wood in machining process. Construction and Building Materials, 2014, 66, 329- 335.
doi: 10.1016/j.conbuildmat.2014.05.098 |
|
Wu D G, Gang T Q, Fan X G, et al. Surface roughness measuring based on the theory of fractal geometry. Applied Mechanics and Materials, 2014, 551, 434- 438.
doi: 10.4028/www.scientific.net/AMM.551.434 |
|
Wu X Z, Niu H, Li X J, et al. A study on the GA-BP neural network model for surface roughness of basswood-veneered medium-density fiberboard. Holzforschung, 2020, 74 (10): 979- 988.
doi: 10.1515/hf-2019-0248 |
[1] | Caimei Liu,Xizhi Wu,Yuyang Wu,Xianjun Li. Sanding Force and Surface Roughness of Air-Drum Belt Sanding Finished MDF [J]. Scientia Silvae Sinicae, 2024, 60(3): 131-140. |
[2] | Ya Wang,Junhui Wang,Fude Wang,Yifu Liu,Cancan Tan,Yanchao Yuan,Wen Nie,Jianfeng Liu,Ermei Chang,Zirui Jia. Simulation of Suitable Distribution Areas of Picea koraiensis in China Since the Last Interglacial and Under Future Climate Scenarios [J]. Scientia Silvae Sinicae, 2023, 59(12): 1-12. |
[3] | Yufan Zhang,Yingqiao Dang,Xiaoyi Wang. Risk Analysis of Dispersal and Outbreak of Massicus raddei (Coleoptera: Cerambycidae) in China Based on Climate and Host Distribution [J]. Scientia Silvae Sinicae, 2022, 58(6): 95-109. |
[4] | Aijun Wang,Dongye Lu,Guosheng Zhang,Haiguang Huang,Ying Wang,Sileng Hu,Min Ao. Potential Distribution of Juniperus sabina under Climate Change in Eurasia Continent Based on MaxEnt Model [J]. Scientia Silvae Sinicae, 2021, 57(8): 43-55. |
[5] | Danni Zhang,Xiya Chen,Chuanfu Zang. Potential for Afforestation in the Three-North Region Where Implements Shelter-Belt Forest Program [J]. Scientia Silvae Sinicae, 2021, 57(5): 184-194. |
[6] | Chaohong Li,Wei Wei,Shuxin Liu. Performance Evaluation of Natural Forest Protection Project in State-Owned Forest Region——A Case Study of Key State-Owned Forest Region in Heilongjiang Province [J]. Scientia Silvae Sinicae, 2021, 57(4): 153-162. |
[7] | Li Weiguang, Zhang Zhankuan. Effect of the Side Edge Parameters of Sawteeth on the Surface Roughness in Woodworking Circular Sawing [J]. Scientia Silvae Sinicae, 2019, 55(1): 66-73. |
[8] | Zhang Ying, Zhang Xiaoli, Li Hongzhi, Li Liangcai. A Comparison of Landcover Classification Based on the Improved Transformed Divergence Analysis [J]. Scientia Silvae Sinicae, 2018, 54(8): 88-98. |
[9] | Liu Dan, Li Yutang, Hong Lingxia, Guo Hong, Xie Yangsheng, Zhang Zhuoli, Lei Xiangdong, Tang Shouzheng. The Suitability of Potential Geographic Distribution of Natural Forest Types in Jilin Province Based on Maximum Entropy Models [J]. Scientia Silvae Sinicae, 2018, 54(7): 1-15. |
[10] | Wang Leihong, Yang Junxian, Xu Xiaoniu. Analysis of Suitable Bioclimatic Characteristics of Pseudolarix amabilis by Using MaxEnt Model [J]. Scientia Silvae Sinicae, 2015, 51(1): 127-131. |
[11] | Yin Xiaojie, Zhou Guangsheng, Sui Xinghua, He Qijin, Li Rongping. Potential Geographical Distribution of Quercus wutaishanica Forest and Its Dominant Factors [J]. Scientia Silvae Sinicae, 2013, 49(8): 10-14. |
[12] | Liu Lijuan;;Pang Yong;Zhang Xiaoyang;Svein Solberg;Fan Wenyi;Li Zengyuan;Li Mingze. Monitoring Forest Growth Disturbance Using Time Series MODIS EVI Data [J]. Scientia Silvae Sinicae, 2012, 48(2): 54-62. |
[13] | Chen Xinmei;Lei Yuancai;Zhang Xiongqing;Jia Hongyan. Effects of Sample Sizes on Accuracy and Stability of Maximum Entropy Model in Predicting Species Distribution [J]. Scientia Silvae Sinicae, 2012, 48(1): 53-59. |
[14] | Liu Enbin;Zhou Guomo;Shi Yongjun;Ge Hongli. Bivariate Theoretic Probability Distribution of Forest Mensuration:A Case of Moso Bamboo Forest [J]. Scientia Silvae Sinicae, 2010, 46(10): 29-36. |
[15] | Yu Botao;Tian Gang. Analysis and Measuration on Frangibility of Forestry Industrial System Based on Operational Efficiency Evaluation [J]. Scientia Silvae Sinicae, 2008, 44(7): 111-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||