Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (5): 158-168.doi: 10.11707/j.1001-7488.LYKX20230388
• Research papers • Previous Articles Next Articles
Shihao Zhu(),Zhiwei Wu*,Zhengjie Li,Shun Li
Received:
2023-08-25
Online:
2024-05-25
Published:
2024-06-14
Contact:
Zhiwei Wu
E-mail:ggbond@jxnu.edu.cn
CLC Number:
Shihao Zhu,Zhiwei Wu,Zhengjie Li,Shun Li. Moisture Dynamics and Modeling of Ground Surface Fine Dead Combustibles in Pinus massoniana Forest in Southern Jiangxi, China[J]. Scientia Silvae Sinicae, 2024, 60(5): 158-168.
Table 1
Correlation between surface fine dead combustibles moisture content and meteorological factors at different slope aspects"
时滞 Time lag | 阳坡 Sunny slope | 阴坡 Shady slope | |||||||
温度 Temperature | 相对湿度 Relative humidity | 风速 Wind speed | 光照强度 Illumination | 温度 Temperature | 相对湿度 Relative humidity | 风速 Wind speed | 光照强度 Illumination | ||
当前时间 Current time | ?0.38*** | 0.23*** | 0.12*** | ?0.10*** | ?0.34*** | 0.14*** | ?0.06 | ?0.15*** | |
前2 h 2 hours ago | ?0.37*** | 0.22*** | 0.12*** | ?0.17*** | ?0.34*** | 0.14*** | ?0.07*** | ?0.18*** | |
前4 h 4 hours ago | ?0.36*** | 0.21*** | 0.12*** | ?0.17*** | ?0.33*** | 0.14*** | ?0.07*** | ?0.19*** | |
前6 h 6 hours ago | ?0.35*** | 0.20*** | 0.12*** | ?0.15*** | ?0.32*** | 0.14*** | ?0.08*** | ?0.19*** | |
前8 h 8 hours ago | ?0.33*** | 0.20*** | 0.13*** | ?0.13*** | ?0.31*** | 0.15*** | ?0.08*** | ?0.18*** | |
前10 h 10 hours ago | ?0.32*** | 0.20*** | 0.13*** | ?0.11*** | ?0.30*** | 0.15*** | ?0.08*** | ?0.18*** |
Table 2
Meteorological regression model of surface fine dead combustibles moisture content"
坡向 Aspect | 时间 Time | 逐步回归预测模型 Stepwise regression prediction model | RMSE | R2 | MAE |
阳坡 Sunny slope | 16:00 | M=1.16+2.38 I?0.10 W?0.67 Tt-2-1.11 Tt-4?0.14 Wt-4+0.26 It-4+0.78 Tt-6?0.17 Wt-6?0.19 It-6+ 0.70 Tt-8+0.21 Wt-8?0.41 It-8+0.13 Wt-10 | 0.72 | 0.47 | 0.54 |
18:00 | M=1.19+2.35 It-2?0.65 Tt-4?0.92 Tt-6?0.16 Wt-6+ 0.19 It-6+0.6 Tt-8?0.10 Wt-8?0.20 It-8+ 0.72 Tt-10+0.17 Wt-10?0.34 It-10 | 0.76 | 0.40 | 0.57 | |
20:00 | M=22.65+0.7 T+0.23 W+55.41 It-2+2.13 It-4?1.59 Tt-6?0.15 Wt-8+0.15 It-8+0.54 Tt-10?0.15 It-10 | 0.78 | 0.41 | 0.59 | |
阴坡 Shady slope | 14:00 | M=2.29?0.32 W?0.23 Ht-2?1.66 Tt-4+1.47 Tt-8?0.11 Wt-8+3.53 It-8 | 0.69 | 0.51 | 0.55 |
16:00 | M=2.56+1.46 I-0.45 Tt-2?0.29 Wt-2?0.21 Ht-4?1.17 Tt-6+1.39 Tt-10-0.14 Wt-10+2.9 It-10 | 0.70 | 0.50 | 0.55 | |
18:00 | M=1.58+0.08 W+2.06 It-2?0.8 Tt-4?0.38 Wt-8?1.07 Tt-8+1.58 Tt-10 | 0.73 | 0.47 | 0.57 |
Table S1
Meteorological regression model of surface fine dead combustibles moisture content"
坡向 Aspect | 时间 Time | 逐步回归预测模型 Stepwise regression prediction model | RMSE | R2 | MAE |
阳坡 Sunny slope | 0:00 | M=1.08+0.62 T?0.12 W+0.23 Wt-4+2.30 It-8?0.94 Tt-10 | 0.81 | 0.36 | 0.61 |
2:00 | M=19.30+0.76 T+0.21 W?0.21 Wt-2+0.17 Wt-6+47.8 It-8-1.12 Tt-10+2.42 It-10 | 0.84 | 0.36 | 0.64 | |
4:00 | M=58.06+0.66 T+0.28 Wt-2?0.21 Wt-4+0.15 Wt-8-1.01 Tt-10+148.83 It-10 | 0.92 | 0.29 | 0.75 | |
6:00 | M=7 479.61+1.55T+0.16 W?0.98 Tt-2+19 201.79 It-2+0.24 Wt-4?0.19 Wt-6-1.01 Tt-10+0.21 Ht-10+0.10 Wt-10 | 0.97 | 0.20 | 0.76 | |
8:00 | M=8 125.94?0.76T+0.23W+1.88 Wt-2+20 860.68 It-4+0.21 Wt-6-1.51 Tt-8?0.27 Wt-8+0.25 Ht-10 | 0.91 | 0.26 | 0.74 | |
10:00 | M=5 374.27?0.63T?0.11 W+0.22 Wt-2+1.23 Tt-4+13796.24 It-6+0.19 Wt-8?0.97 Tt-10?0.24 Wt-10 | 0.80 | 0.37 | 0.64 | |
12:00 | M=5 206.65-1.19T+0.30I?0.09W?0.15Wt-2+0.92Tt-4+0.19 Wt-4+0.96 Tt-6-1.45 It-6?0.10 Tt-8+13 365.52 It-8+0.10 Wt-10 | 0.76 | 0.35 | 0.60 | |
14:00 | M=4 420.57-1.44 Tt-2?0.11 Wt-2+0.31 It-2?0.21 Wt-4+1.64 Tt-6+0.20 Wt-6+0.13 Wt-8-1.67 It-8?0.47 Tt-10+0.11 Wt-10+11 345.30 It-10 | 1.39 | 0.30 | 0.77 | |
16:00 | M=1.16+2.38 I?0.10 W?0.67 Tt-2-1.11 Tt-4?0.14 Wt-4+0.26 It-4+0.78 Tt-6?0.17 Wt-6?0.19 It-6+0.70 Tt-8+0.21 Wt-8?0.41 It-8+0.13 Wt-10 | 0.72 | 0.47 | 0.54 | |
18:00 | M=1.19+2.35 It-2?0.65 Tt-4?0.92 Tt-6?0.16 Wt-6+ 0.19 It-6+0.60 Tt-8?0.10 Wt-8?0.20 It-8+0.72 Tt-10+0.17 Wt-10?0.34 It-10 | 0.76 | 0.40 | 0.57 | |
20:00 | M=22.65+0.70 T+0.23 W+55.41 It-2+2.13 It-4- 1.59 Tt-6?0.15 Wt-8+0.15 It-8+0.54 Tt-10?0.15 It-10 | 0.78 | 0.41 | 0.59 | |
22:00 | M=28.10+1.11 T+0.27 Wt-2-1.09 Tt-4+69.42 It-4+2.47 It-6?0.44 It-8?0.37 Tt-10?0.13 Wt-10 | 0.79 | 0.40 | 0.60 | |
阴坡 Shady slope | 0:00 | M=1.33+1.29 H+0.16 W+1.72 Tt-2+0.26 Wt-2- 1.43 Tt-4?0.15 Wt-6?0.17 Ht-8+2.64 It-8?0.82 Tt-10?0.38 Wt-10?0.39 It-10 | 0.78 | 0.42 | 0.61 |
2:00 | M=1.29+2.04 H+0.32 W+0.98 Tt-2+0.19 Wt-2?0.23 Ht-8?0.22 Wt-8-1.72 Tt-10?0.25 Wt-10+3.26 It-10 | 0.85 | 0.34 | 0.65 | |
4:00 | M=1 273.8+0.7 T+3 269.04 I?0.17 W+0.2 Wt-2+1.77Tt-6+0.27 Wt-6+0.69 Ht-8-2.77 Tt-10?0.52 Ht-10?0.3 Wt-10 | 0.90 | 0.28 | 0.70 | |
6:00 | M=913.02+0.61 T?0.28 Wt-2+2343.5 It-2+ 1.81 Tt-8+0.93 Ht-8+0.25 Wt-8-2.94 Tt-10 | 0.94 | 0.20 | 0.74 | |
8:00 | M=793.03-1.7 T?0.61 H?0.12 W+1.67 Tt-2?0.21 Wt-2+3.09 It-2+2032.7 It-4+1.89 Ht-6+0.11 Wt-6- 0.64Tt-10 | 0.87 | 0.27 | 0.70 | |
10:00 | M=2.28-1.42 T?0.18 H?0.13 W?0.11 Wt-2+ 1.17 Tt-4?0.18 Wt-4+3.72 It-4+0.1 Wt-8 | 0.80 | 0.34 | 0.64 | |
12:00 | M=2.02?0.17 H+0.19 I-1.81 Tt-2?0.12 Wt-2?0.1 Wt-4+1.61 Tt-6?0.15 Wt-6+2.76 It-6 | 0.75 | 0.41 | 0.59 | |
14:00 | M=2.29?0.32 W?0.23 Ht-2-1.66 Tt-4+1.47 Tt-8?0.11 Wt-8+3.53 It-8 | 0.69 | 0.51 | 0.55 | |
16:00 | M=2.56+1.46 I?0.45 Tt-2?0.29 Wt-2?0.21 Ht-4-1.17 Tt-6+1.39 Tt-10?0.14 Wt-10+2.9 It-10 | 0.70 | 0.50 | 0.55 | |
18:00 | M=1.58+0.08 W+2.06 It-2?0.8 Tt-4?0.38 Wt-8-1.07 Tt-8+1.58 Tt-10 | 0.73 | 0.47 | 0.57 | |
20:00 | M=1.54+0.46 Tt-2+2.16 It-4-1.59 Tt-6?0.32 Wt-6+0.88 Tt-10?0.2 It-10 | 0.80 | 0.38 | 0.62 | |
22:00 | M=2+2.06 T+0.33 W-1.47 Tt-2?0.11 Wt-4- 0.15 Ht-6+3.11 It-6?0.84 Tt-8?0.38 Wt-8?0.46 It-8 | 0.79 | 0.39 | 0.61 |
Table S2
Random forest model of surface fine dead combustibles moisture content"
坡向 Aspect | 时间 Time | RMSE | R2 | MAE | 坡向 Aspect | 时间 Time | RMSE | R2 | MAE | |
阳坡 Sunny slope | 0:00 | 0.61 | 0.67 | 0.40 | 阴坡 Shady slope | 0:00 | 0.69 | 0.53 | 0.52 | |
2:00 | 0.73 | 0.53 | 0.47 | 2:00 | 0.83 | 0.32 | 0.63 | |||
4:00 | 0.81 | 0.39 | 0.60 | 4:00 | 0.91 | 0.25 | 0.71 | |||
6:00 | 0.88 | 0.30 | 0.70 | 6:00 | 0.90 | 0.25 | 0.73 | |||
8:00 | 0.90 | 0.26 | 0.73 | 8:00 | 0.85 | 0.32 | 0.67 | |||
10:00 | 0.77 | 0.40 | 0.58 | 10:00 | 0.75 | 0.43 | 0.58 | |||
12:00 | 0.73 | 0.38 | 0.54 | 12:00 | 0.72 | 0.46 | 0.55 | |||
14:00 | 0.73 | 0.44 | 0.52 | 14:00 | 0.68 | 0.52 | 0.51 | |||
16:00 | 0.63 | 0.59 | 0.43 | 16:00 | 0.67 | 0.52 | 0.51 | |||
18:00 | 0.61 | 0.63 | 0.41 | 18:00 | 0.71 | 0.50 | 0.52 | |||
20:00 | 0.62 | 0.63 | 0.40 | 20:00 | 0.71 | 0.49 | 0.53 | |||
22:00 | 0.61 | 0.67 | 0.41 | 22:00 | 0.72 | 0.48 | 0.54 |
Table 4
Relative importance evaluation of random forest"
坡向 Aspect | 时间 Time | 气象因子 Meteorological factor | 增加的 均方误差 IncMSE | 增加的 节点纯度 IncNodePurity |
阳坡 Sunny slope | 0:00 | Ht-10 | 0.23 | 26.96 |
It-8 | 0.27 | 24.12 | ||
Tt-10 | 0.14 | 19.61 | ||
It-6 | 0.20 | 13.45 | ||
Tt-8 | 0.09 | 12.96 | ||
20:00 | It-4 | 0.22 | 22.31 | |
Ht-8 | 0.09 | 16.99 | ||
Ht-6 | 0.11 | 15.78 | ||
Tt-8 | 0.12 | 15.01 | ||
Tt-6 | 0.10 | 13.91 | ||
22:00 | It-6 | 0.24 | 23.98 | |
Ht-8 | 0.14 | 19.44 | ||
Ht-10 | 0.10 | 17.92 | ||
Tt-10 | 0.12 | 16.86 | ||
Tt-8 | 0.11 | 14.41 | ||
阴坡 Shady slope | 14:00 | It-4 | 0.25 | 30.20 |
It-6 | 0.15 | 20.40 | ||
It-2 | 0.08 | 14.24 | ||
W | 0.09 | 13.13 | ||
I | 0.04 | 10.62 | ||
16:00 | It-6 | 0.28 | 27.08 | |
It-8 | 0.16 | 21.54 | ||
It-4 | 0.14 | 19.15 | ||
Wt-2 | 0.09 | 13.58 | ||
It-2 | 0.08 | 12.80 | ||
18:00 | It-8 | 0.22 | 32.09 | |
It-10 | 0.12 | 19.49 | ||
It-6 | 0.12 | 18.26 | ||
It-4 | 0.12 | 16.44 | ||
Wt-4 | 0.11 | 14.56 |
白海峰, 牛树奎, 刘晓东. 2023. 北京西山林场侧柏林潜在地表火行为及树冠火转化比率研究. 消防科学与技术, 42(4): 561−565. | |
Bai H F, Niu S K, Liu X D. 2023. Study on potential surface fire behavior and transition ration to crown fire of Platycladus orientalis stands in Beijing Xishan forest farm. Fire Science and Technology, 42(4): 561−565. [in Chinese] | |
范佳乐, 郭 妍, 于宏洲, 等. 地表细小可燃物含水率实测值与自动测量仪器值的比较和校正. 森林工程, 2023, 2023,39 (1): 129- 139. | |
Fan J L, Guo Y, Yu H Z, et al. The comparison and dynamic calibration between the manual measured data of the surface fine fuel moisture content and the automatic measuring instrument data. Forest Engineering, 2023, 2023,39 (1): 129- 139. | |
高 超, 林红蕾, 胡海清, 等. 我国林火发生预测模型研究进展. 应用生态学报, 2020, 31 (9): 3227- 3240. | |
Gao C, Lin H L, Hu H Q, et al. A review of models of forest fire occurrence prediction in China. Chinese Journal of Applied Ecology, 2020, 31 (9): 3227- 3240. | |
高仲亮, 王何晨阳, 魏建珩, 等.2024. 滇中云南松林地表可燃物含水率预测模型. 生态学杂志, 43(2): 342−351. | |
Gao Z L, Wang-He C Y, Wei J H,et al. 2024. Prediction model for surface fuel moisture in Pinus yunnanensis forest in central Yunnan. Chinese Journal of Ecology, 43(2): 342−351.[in Chinese] | |
韩岳宏, 王 月, 高国平. 5种林型地表细小可燃物组成对平衡含水率和时滞的影响. 东北林业大学学报, 2018, 46 (11): 62- 65. | |
Han Y H, Wang Y, Gao G P. Fine fuels, equilibrium moisture content, and time-lag of several forest types. Journal of Northeast Forestry University, 2018, 46 (11): 62- 65. | |
贺红士, 常 禹, 胡远满, 等. 森林可燃物及其管理的研究进展与展望. 植物生态学报, 2010, 34 (6): 741- 752.
doi: 10.3773/j.issn.1005-264x.2010.06.013 |
|
He H S, Chang Y, Hu Y M, et al. Contemporary studies and future perspectives of forest fuel and fuel management. Chinese Journal of Plant Ecology, 2010, 34 (6): 741- 752.
doi: 10.3773/j.issn.1005-264x.2010.06.013 |
|
胡海清, 陆 昕, 孙 龙, 等. 大兴安岭典型林分地表死可燃物含水率动态变化及预测模型. 应用生态学报, 2016, 27 (7): 2212- 2224. | |
Hu H Q, Lu X, Sun L, et al. Dynamics and prediction models of ground surface dead fuel moisture content for typical stands in Great Xing’an Mountains, Northeast China. Chinese Journal of Applied Ecology, 2016, 27 (7): 2212- 2224. | |
李保中, 刘鑫源, 于 淙, 等. 哈尔滨城市林业示范基地5种典型人工林地表死可燃物含水率的预测. 东北林业大学学报, 2022, 50 (11): 65- 71. | |
Li B Z, Liu X Y, Yu C, et al. Prediction on moisture content of surface dead fuels in five typical artificial forests in Harbin urban forestry demonstration base. Journal of Northeast Forestry University, 2022, 50 (11): 65- 71. | |
李 丹, 杨丽萍, 贾成朕. 大兴安岭不同林型地表死可燃物含水率特征及其影响因子. 干旱气象, 2021, 39 (1): 144- 150. | |
Li D, Yang L P, Jia C L. Characteristics of ground surface dead fuel moisture content for different stand types in Great Xing’an Mountains and relevant affecting factors. Journal of Arid Meteorology, 2021, 39 (1): 144- 150. | |
李 克, 倪泽仁, 刘晓东, 等. 南京市5种常见树种的燃烧性研究. 西北农林科技大学学报(自然科学版), 2020, 48 (1): 103- 110. | |
Li K, Ni Z R, Liu X D, et al. Flammability of five common tree species in Nanjing. Journal of Northwest A & F University (Natural Science Edition), 2020, 48 (1): 103- 110. | |
陆 昕, 胡海清, 孙 龙, 等. 大兴安岭地表细小死可燃物含水率预测模型. 东北林业大学学报, 2016, 44 (7): 84- 90. | |
Lu X, Hu H Q, Sun L, et al. Prediction models of fine dead fuels moisture content for typical stand in Daxing’an Mountains. Journal of Northeast Forestry University, 2016, 44 (7): 84- 90. | |
吕红燕, 冯 倩. 随机森林算法研究综述. 河北省科学院学报, 2019, 36 (3): 37- 41. | |
Lü H Y, Feng Q. A review of random forests algorithm. Journal of the Hebei Academy of Sciences, 2019, 36 (3): 37- 41. | |
孟祥江, 何邦亮, 马正锐, 等. 我国马尾松林经营现状及近自然育林探索. 世界林业研究, 2018, 31 (3): 63- 67. | |
Meng X J, He B L, Ma Z R, et al. Current situation of Masson pine forest management and its practice of close-to-nature silviculture in China. World Forestry Research, 2018, 31 (3): 63- 67. | |
裴建元, 叶 清, 赵 平, 等. 常绿针叶树种抗火性研究. 农业灾害研究, 2014, 4 (7): 43- 46. | |
Pei J Y, Ye Q, Zhao P, et al. Study on fire resistance of evergreen coniferous tree species. Journal of Agricultural Catastrophology, 2014, 4 (7): 43- 46. | |
彭徐剑, 吴建国. 江西省森林火灾发生特点及防治对策研究. 消防科学与技术, 2020, 39 (10): 1439- 1442. | |
Peng X J, Wu J G. Study on forest fire characteristics and governmance conutermeasures in Jiangxi Province. Fire Science and Technology, 2020, 39 (10): 1439- 1442. | |
孙 龙, 刘 祺, 胡同欣. 森林地表死可燃物含水率预测模型研究进展. 林业科学, 2021, 57 (4): 142- 152. | |
Sun L, Liu Q, Hu T X. Advances in research on prediction model of moisture content of surface dead fuel in forests. Scientia Silvae Sinicae, 2021, 57 (4): 142- 152. | |
孙 龙, 马灵感, 郭 妍, 等. 基于卷积神经网络及气象要素回归法的地表死可燃物含水率预测模型. 应用生态学报, 2023, 34 (9): 2453- 2461. | |
Sun L, Ma L G, Guo Y, et al. Prediction model of water content in surface dead fuel based on convolution neural network and meteorological factors regression. Chinese Journal of Applied Ecology, 2023, 34 (9): 2453- 2461. | |
田 甜, 邸雪颖. 森林地表可燃物含水率变化机理及影响因子研究概述. 森林工程, 2013, 29 (2): 21- 25.
doi: 10.3969/j.issn.1001-005X.2013.02.004 |
|
Tian T, Di X Y. Research review on change mechanism and impact factors of forest surface fuel moisture. Forest Engineering, 2013, 29 (2): 21- 25.
doi: 10.3969/j.issn.1001-005X.2013.02.004 |
|
于宏洲, 金 森, 邸雪颖. 以小时为步长的大兴安岭兴安落叶松林地表可燃物含水率预测模型. 应用生态学报, 2013, 24 (6): 1565- 1571. | |
Yu H Z, Jin S, DI X Y. Prediction models for ground surface fuels moisture content of Larix gmelinii stand in Daxing’an ling of China based on one-hour time step. Chinese Journal of Applied Ecology, 2013, 24 (6): 1565- 1571. | |
詹 航, 牛树奎, 王 博. 2020. 北京地区8种树种枯死可燃物含水率预测模型及变化规律. 北京林业大学学报, 42(6): 80−90. | |
Zhan H, Niu S K, Wang B. 2020. Prediction models and changing rules of dead fuel moisture content of 8 forest species in Beijing area. Journal of Beijing Forestry University, 42(6): 80−90. [in Chinese] | |
张 恒, 孙子健, 张运林, 等. 不同距离气象数据对细小可燃物含水率预测模型精度的影响. 浙江农林大学学报, 2018, 35 (3): 529- 536. | |
Zhang H, Sun Z J, Zhang Y L, et al. Distance of meteorological data from test site and fine fuel forecast model accuracy. Journal of Zhejiang A & F University, 2018, 35 (3): 529- 536. | |
张 冉. 2020. 大兴安岭典型林分及沟塘草甸细小死可燃物含水率预测模型. 哈尔滨: 东北林业大学. | |
Zhang R. 2020. Moisture content prediction model of fine dead fuel in typical forests and ditch meadows in Daxing’an Mountains. Harbin: Northeast Forestry University. [in Chinese] | |
张笑一, 胡同欣, 刘方策, 等. 兴安落叶松针叶床层火蔓延的模拟. 东北林业大学学报, 2021, 49 (1): 117- 124. | |
Zhang X Y, Hu T X, Liu F C, et al. Simulation of fire spread in coniferous bed of Larix gmelinii. Journal of Northeast Forestry University, 2021, 49 (1): 117- 124. | |
张运林, 宋 红, 胡海清. 云南3种乔木防火期内含水率变化及预测模型. 西北林学院学报, 2019, 34 (1): 157- 162. | |
Zhang Y L, Song H, Hu H Q. Prediction model of moisture content of 3 tree species in Yunnan Province. Journal of Northwest Forestry University, 2019, 34 (1): 157- 162. | |
周 勇, 张 贵, 张运林, 等. 江西南昌活可燃物含水率动态变化和预测模型. 中南林业科技大学学报, 2021, 41 (8): 28- 35. | |
Zhou Y, Zhang G, Zhang Y L, et al. Dynamic change and prediction model of live fuel in Nangchang, Jiangxi Province. Journal of Central South University of Forestry & Technology, 2021, 41 (8): 28- 35. | |
Abbott K N, Alexander M E, MacLean D A, et al. Predicting forest floor moisture for burned and unburned Pinus banksiana forests in the Canadian Northwest Territories. International Journal of Wildland Fire, 2007, 16 (1): 71- 80.
doi: 10.1071/WF06021 |
|
Aguado I, Chuvieco E, Borén R, et al. Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment. International Journal of Wildland Fire, 2007, 16 (4): 390- 397.
doi: 10.1071/WF06136 |
|
Alves M, Batista A C, Soares R V, et al. Fuel moisture sampling and modeling in Pinus Elliottii Engelm. plantations based on weather conditions in Parana-Brazil. IForest-Biogeosciences and Forestry, 2009, 2, 99- 103.
doi: 10.3832/ifor0489-002 |
|
Barberá I, Paritsis J, Ammassari L, et al. 2023. Microclimate and species composition shape the contribution of fuel moisture to positive fire-vegetation feedbacks. Agricultural and Forest Meteorology, 330. | |
Bakšić N, Bakšić D. Predicting the fine fuel moisture content in Dalmatian Black Pine needle litter. International Journal of Wildland Fire, 2022, 31 (7): 708- 719.
doi: 10.1071/WF21092 |
|
Becker R A, Chambers J M, Wilks A R. 1988. The new S language. 1st ed. A programming environment for data analysis and graphics. Boca Raton: CRC press. | |
Bradshaw L S, Deeming J E , Burgan R E , et al. 1984. The 1978 national fire-danger rating system: technical documentation.General technical report INT-169. Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 44: 169. | |
Breiman L. Random forests. Machine Language, 2001, 45 (1): 5- 32. | |
Capps S B, Zhuang W, Liu R, et al. Modelling chamise fuel moisture content across California: a machine learning approach. International Journal of Wildland Fire, 2022, 31 (2): 136- 148.
doi: 10.1071/WF21061 |
|
Cruz M G, Alexander M E, Fernandes P A M. 2008. Development of a model system to predict wildfire behaviour in pine plantations. Australian Forestry, 71(2): 113−121. | |
FAO. 2020.Global forest resources assessment 2020 – key findings. Rome. | |
Gould W A, González G, Hudak A T, et al. Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments. Ambio, 2008, 37 (7/8): 577- 587. | |
Hiers J K, Stauhammer C L, O’Brien J J, et al. Fine dead fuel moisture shows complex lagged responses to environmental conditions in a saw palmetto (Serenoa repens) flatwoods. Agricultural and Forest Meteorology, 2019, 266/267, 20- 28.
doi: 10.1016/j.agrformet.2018.11.038 |
|
Hood P R, Nelson K N, Rhoades C C, et al. The effect of salvage logging on surface fuel loads and fuel moisture in beetle-infested lodgepole pine forests. Forest Ecology and Management, 2017, 390, 80- 88.
doi: 10.1016/j.foreco.2017.01.003 |
|
Jain P, Coogan S C P, Subramanian S G, et al. A review of machine learning applications in wildfire science and management. Environmental Reviews, 2020, 28 (4): 478- 505.
doi: 10.1139/er-2020-0019 |
|
James G, Witten D, Hastie T, et al. 2013. An introduction to statistical learning. New York: Springer. | |
Klein M, Garvelmann J, Förster K. Revisiting forest effects on winter air temperature and wind speed: new open data and transfer functions. Atmosphere, 2021, 12 (6): 710.
doi: 10.3390/atmos12060710 |
|
Kloster S, Brücher T, Brovkin V, et al. Controls on fire activity over the Holocene. Climate of the Past, 2015, 11 (5): 781- 788.
doi: 10.5194/cp-11-781-2015 |
|
Kuhn M. 2008. Building predictive models in R using the caret package. Journal of Statistical Software, 28(5): 1−26. | |
Littell J S, Peterson D L, Riley K L, et al. A review of the relationships between drought and forest fire in the United States. Global Change Biology, 2016, 22 (7): 2353- 2369.
doi: 10.1111/gcb.13275 |
|
Pettinari M, Chuvieco E. Fire behavior simulation from global fuel and climatic information. Forests, 2017, 8 (6): 179.
doi: 10.3390/f8060179 |
|
Masinda M M, Li F, Liu Q, et al. Prediction model of moisture content of dead fine fuel in forest plantations on Mao’er Mountain, northeast China. Journal of Forestry Research, 2021, 32 (5): 2023- 2035.
doi: 10.1007/s11676-020-01280-x |
|
Matthews S. Dead fuel moisture research: 1991—2012. International Journal of Wildland Fire, 2014, 23 (1): 78.
doi: 10.1071/WF13005 |
|
Nyman P, Metzen D, Noske P J, et al. Quantifying the effects of topographic aspect on water content and temperature in fine surface fuel. International Journal of Wildland Fire, 2015, 24 (8): 1129.
doi: 10.1071/WF14195 |
|
Ferrer Palomino A, Sánchez Espino P, Borrego Reyes C, et al. Estimation of moisture in live fuels in the Mediterranean: linear regressions and random forests. Journal of Environmental Management, 2022, 322, 116069.
doi: 10.1016/j.jenvman.2022.116069 |
|
Jyoteeshkumar reddy P, Sharples J J, Lewis S C, et al. Modulating influence of drought on the synergy between heatwaves and dead fine fuel moisture content of bushfire fuels in the Southeast Australian region. Weather and Climate Extremes, 2021, 31, 100300.
doi: 10.1016/j.wace.2020.100300 |
|
Revelle W. 2013. Psych: Procedures for psychological, psychometric, and personality research. R package version 1.0–95. Evanston, Illinois. | |
Rothacher Y, Strobl C. 2023. Identifying informative predictor variables with random forests. Journal of Educational and Behavioral Statistics. | |
Rothermel R C. 1983. How to predict the spread and intensity of forest and range fires. U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. | |
Schiks T J, Wotton B M. Modifying the Canadian fine fuel moisture code for masticated surface fuels. International Journal of Wildland Fire, 2015, 24 (1): 79.
doi: 10.1071/WF14041 |
|
Sharma S. 2017. Soil moisture and vegetation dynamics in southern great plains grasslands. Corvallis: Oklahoma State University. | |
Slijepcevic A, Anderson W R, Matthews S, et al. An analysis of the effect of aspect and vegetation type on fine fuel moisture content in eucalypt forest. International Journal of Wildland Fire, 2018, 27 (3): 190.
doi: 10.1071/WF17049 |
|
Tyukavina A, Potapov P, Hansen M C , et al. 2022. Global trends of forest loss due to fire from 2001 to 2019. Frontiers in Renote Sensing, 3. | |
Van Wagner C E. 1987. Development and structure of the Canadian forest fire weather index system. Canadian Forestry Service, Headquarters, Ottawa. Forestry Technical Report 35. | |
Zhang R, Hu H Q, Qu Z L, et al. Diurnal variation models for fine fuel moisture content in boreal forests in China. Journal of Forestry Research, 2021, 32 (3): 1177- 1187.
doi: 10.1007/s11676-020-01109-7 |
[1] | Shoujia Liu,Tuo He,Yang Lu,Lichao Jiao,Juan Guo,Wiedenhoeft Alex C,Yafang Yin. Quantitative Anatomy Analysis on Wood Feature Variability and Wood Identification of Swietenia Species [J]. Scientia Silvae Sinicae, 2024, 60(5): 169-176. |
[2] | Huiling Tian,Jianhua Zhu,Xiao He,Xinyun Chen,Zunji Jian,Chenyu Li,Xueyuan Guo,Guosheng Huang,Wenfa Xiao. Projected Biomass Carbon Stock of Arbor Forest of Three Provinces in Northeastern China Based on Random Forest Model [J]. Scientia Silvae Sinicae, 2022, 58(4): 40-50. |
[3] | Xinyuan Liu,Guang Yang,Jibin Ning,Daotong Geng,Hongzhou Yu,Xueying Di. Quality and Influencing Factors of Particulate Matter Released by Surface Fuel Combustion in Korean Pine Plantation [J]. Scientia Silvae Sinicae, 2022, 58(3): 97-106. |
[4] | Xiaofang Zhang,Xuzhan Guo,Liang Hong,Tao Chen,Liyong Fu,Huiru Zhang. Comparison of Single Tree Crown Prediction Models of Larix principis-rupprechtii and Betula platyphylla in the Core Area of the Winter Olympics in China [J]. Scientia Silvae Sinicae, 2022, 58(10): 89-100. |
[5] | Xuzhan Guo,Qiao Chen,Xiaofang Zhang,Liang Hong,Yuanyuan You,Shouzheng Tang,Liyong Fu. Extraction of Healthy Canopy of New Afforestation for Pinus tabulaeformis Based on UAV High-Resolution Image [J]. Scientia Silvae Sinicae, 2022, 58(10): 111-120. |
[6] | Zhongqiu Sun,Jinping Gao,Fayun Wu,Xianlian Gao,Yang Hu,Jianxin Gao. Estimating Forest Stock Volume via Small-Footprint LiDAR Point Cloud Data and Random Forest Algorithm [J]. Scientia Silvae Sinicae, 2021, 57(8): 68-81. |
[7] | Jiaqi You,Mingze Li,Wenyi Fan,Ying Quan,Bin Wang,Zhukun Mo,Zixiao Zhu. Stand Type Identification Based on Hyperspectral and LiDAR Data [J]. Scientia Silvae Sinicae, 2021, 57(5): 119-129. |
[8] | Ying Pan,Mingming Ding,Jie Lin,Qiao Dai,Geng Guo,Linlin Cui. Inversion of Forest Leaf Area Index Based on PROSAIL Model and Multi-Angle Remote Sensing Data [J]. Scientia Silvae Sinicae, 2021, 57(4): 90-106. |
[9] | Wenbo Li,Zhengang Lü,Xuanrui Huang,Zhidong Zhang. Predicting Spatial Distribution of Site Index for Larix principis-rupprechtii Plantations in the Northern Hebei Province [J]. Scientia Silvae Sinicae, 2021, 57(3): 79-89. |
[10] | Jiaqi Ding,Wenli Huang,Yingchun Liu,Yang Hu. Estimation of Forest Aboveground Biomass in Northwest Hunan Province Based on Machine Learning and Multi-Source Data [J]. Scientia Silvae Sinicae, 2021, 57(10): 36-48. |
[11] | Lei Zhang, Pengsen Sun, Shirong Liu. Growing-Season Transpiration of Typical Forests in Different Succession Stages in Subalpine Region of Western Sichuan, China [J]. Scientia Silvae Sinicae, 2020, 56(1): 1-9. |
[12] | Hou Xiaojing, Ming Jinke, Qin Rongshui, Zhu Jiping. Analysis of the Fire Risk in Wildland-Urban Interface with Random Forest Model [J]. Scientia Silvae Sinicae, 2019, 55(8): 194-200. |
[13] | Jie Lan,Xiangdong Lei,Yutao Zhang. Analysis on Trade-Offs and Synergies of Multiple Functions of Picea schrenkiana Forests in Central Tianshan Mountains [J]. Scientia Silvae Sinicae, 2019, 55(11): 9-18. |
[14] | Yingkai Zhang,Pengju Liu,Changchun Liu,Yi Ren. Prediction Method of Cunninghamia lanceolata Growth Based on Spatial Clustering [J]. Scientia Silvae Sinicae, 2019, 55(11): 137-144. |
[15] | Chen Liang, Zhou Guomo, Du Huaqiang, Liu Yuli, Mao Fangjie, Xu Xiaojun, Li Xuejian, Cui Lu, Li Yangguang, Zhu Di. Simulation of CO2 Flux and Controlling Factors in Moso Bamboo Forest Using Random Forest Algorithm [J]. Scientia Silvae Sinicae, 2018, 54(8): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||