曹 霖, 彭道黎, 王雪军, 等. 2018. 应用Sentinel-2A卫星光谱与纹理信息的森林蓄积量估算. 东北林业大学学报, 46(9): 54-58. Cao L, Peng D L, Wang X J, et al. 2018. Estimation of forest stock volume with spectral and textural information from the Sentinel-2A. Journal of Northeast Forestry University, 46(9): 54-58. [in Chinese] 黄秋霞, 蔡文华, 王嘉丽, 等. 2024. 基于时间序列的广西桉树人工林识别及时空变化分析. 中国科技论文, 19(1): 123-130. Huang Q X, Cai W H, Wang J L, et al. 2024. Identification and spatio-temporal variation analysis of eucalyptus plantations in Guangxi based on time series. Chinese Science and Technology Papers, 19(1): 123-130. [in Chinese] 李卯森. 2022. 基于时间序列卫星影像的广西桉树人工林林龄估测研究. 桂林: 桂林理工大学. Li M S. 2022. Research on the estimation of eucalyptus plantation ages in Guangxi based on time series satellite images. Guilin: Guilin University of Technology. [in Chinese] 罗凯健, 许晓东, 龙江平, 等. 2021. 结合Landsat 8与PALSAR-2影像的龙南县针叶林蓄积量遥感估测研究. 林业资源管理, (1): 69-76. Luo K J, Xu X D, Long J P, et al. 2021. Research on estimation of coniferous forest volume in Longnan County based on Landsat 8 and PALSAR-2 images. Forest Resources Management, (1): 69-76. [in Chinese] 齐元浩, 侯正阳, 刘太训, 等. 2024. 模型假设对基于模型的森林蓄积量估算的影响. 林业科学, 60(9): 111-123. Qi Y H, Hou Z Y, Liu T X, et al. 2024. The influence of model hypotheses on model-based forest stock volume estimation. Scientia Silvae Sinicae, 60(9): 111-123. [in Chinese] 沈文娟, 李明诗, 黄成全. 2018. 长时间序列多源遥感数据的森林干扰监测算法研究进展. 遥感学报, 22(6): 1005-1022. Shen W J, Li M S and Huang C Q. 2018. Research progress of forest disturbance monitoring algorithms using long-term multi-source remote sensing data. Journal of Remote Sensing, 22(6): 1005-1022. [in Chinese] 孙忠秋, 高金萍, 吴发云, 等. 2021. 基于机载激光雷达点云和随机森林算法的森林蓄积量估测. 林业科学, 57(8): 68-81. Sun Z Q, Gao J P, Wu F Y, et al. 2021. Estimating forest stock volume via small-footprint LiDAR point cloud data and random forest algorithm. Scientia Silvae Sinicae, 57(8): 68-81. [in Chinese] 吴 飏, 张登荣, 张汉奎, 等. 2012. 结合图像纹理特征的森林郁闭度遥感估测. 林业科学, 48(2): 48-53. Wu Y, Zhang D R, Zhang H K, et al. 2012. Remote sensing estimation of forest canopy closure combined with image texture features. Scientia Silvae Sinicae, 48(2): 48-53. [in Chinese] 向安民, 刘凤伶, 于宝义, 等. 2017. 基于k-NN方法和GF遥感影像的森林蓄积量估测. 浙江农林大学学报, 34(3): 406-412. Xiang A M, Liu F L, Yu B Y, et al. 2017. Forest stock volume estimation based on the k-NN method and GF remote sensing data. Journal of Zhejiang A & F University, 34(3): 406-412. [in Chinese] 徐期瑚, 林丽平, 薛春泉, 等. 2018. 基于树高-年龄分级的广东枫香生长模型. 林业资源管理, (5): 47-53. Xu Q H, Lin L P, Xue C Q, et al. 2018. Height-age growth model for Liquidambar formosana in Guangdong using the classified height method. Forest Resources Management, (5): 47-53. [in Chinese] 杨 军. 2021. 卫星遥感技术在森林资源调查中的运用分析. 林业勘查设计, 50(2): 79-81. Yang J. 2020. Analysis on the application of satellite remote sensing technology in forest resources investigation. Forest Investigation Design, 50(2): 79-81. [in Chinese] 张立福, 王 飒, 刘华亮, 等. 2021. 从光谱到时谱——遥感时间序列变化检测研究进展. 武汉大学学报(信息科学版), 46(4): 451-468. Zhang L F, Wang S, Liu H L, et al. 2021. From spectrum to time spectrum - research progress on change detection of remote sensing time series. Journal of Wuhan University (Information Science Edition), 46(4): 451-468. [in Chinese] 钟 莉, 陈芸芝, 汪小钦. 2020. 基于Landsat时序数据的森林干扰监测. 林业科学, 56(5): 80-88. Zhong L, Chen Y Z, Wang X Q. 2020. Forest disturbance monitoring based on Landsat time-series data. Scientia Silvae Sinicae, 56(5): 80-88. [in Chinese] 周小成, 黄婷婷, 李 媛, 等. 2023. 结合遥感林龄因子的亚热带森林蓄积量估算方法. 林业科学, 59(4): 88-99. Zhou X C, Huang T T, Li Y, et al. 2023. Estimation method of subtropical forest stock volume combined with remote sensing forest age factors. Scientia Silvae Sinicae, 59(4): 88-99. [in Chinese] 周宇飞, 王振师, 钟映霞, 等. 2021. 基于无人机机载激光雷达的桉树蓄积量估测技术研究. 林业与环境科学, 37(2): 7-11. Zhou Y F, Wang Z S, Zhong Y X, et al. 2021. Research on the estimation technology of eucalyptus stock volume based on UAV airborne LiDAR. Forestry and Environmental Science, 37(2): 7-11. [in Chinese] Dara A, Baumann M, Kuemmerle T, et al. 2018. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sensing of Environment, 213: 49-60. Deng R X, Xu Z R, Li Y, et al. 2022. Farmland Shelterbelt age mapping using Landsat time series images. Remote Sensing, 14(6): 1457-1457. Hu Y, Xu X L, Wu F, et al. 2020. Estimating forest stock volume in Hunan province, China, by integrating in situ plot data, Sentinel-2 images, and linear and machine learning regression models. Remote Sensing, 12(1): 186-186. James C M, Txomin H, Michieal A W, et al. 2023. Estimating and mapping forest age across Canada’s forested ecosystems. Remote Sensing of Environment, 290: 4234-4257. Liu Z H, Ye Z L, Xu X D, et al. 2022. Mapping forest stock volume based on growth characteristics of crown using multi-temporal Landsat 8 OLI and ZY-3 stereo images in planted eucalyptus forest. Remote Sensing, 14(20): 5082-5082. Marsden C, Maire G l, Stape J L, et al. 2009. Relating MODIS vegetation index time-series with structure, light absorption and stem production of fast-growing Eucalyptus plantations. Forest Ecology and Management, 259(9): 1741-1753. Sergio M M, María-Teresa S F, Javier E, et al. 2023. Detecting abandoned citrus crops using Sentinel-2 time series. A case study in the Comunitat Valenciana region (Spain). ISPRS Journal of Photogrammetry and Remote Sensing, 201: 54-66. Wang M Y, Zheng Y, Huang C Q, et al. 2022. Assessing Landsat-8 and Sentinel-2 spectral-temporal features for mapping tree species of northern plantation forests in Heilongjiang Province, China. Forest Ecosystems, 9(03): 344-356. Zhang C C, Xiao X M, Zhao L C, et al. 2023. Mapping eucalyptus plantation in Guangxi, China by using knowledge-based algorithms and PALSAR-2, Sentinel-2, and Landsat images in 2020. International Journal of Applied Earth Observation and Geoinformation, 120: 1569-8432. Zhe Z. 2017. Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 130: 370-384. Zhe Z, Woodcock C E. 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144: 152-171.
|