Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (1): 197-208.doi: 10.11707/j.1001-7488.LYKX20240141
• 综述 • Previous Articles
Kaida Yan1(),Fengjun Zhao1,*(
),Liqing Si1,Lifu Shu1,Mingyu Wang1,Weike Li1,Dong Han2,Xiaoxiao Li1,Nuanyang Zhou1
Received:
2024-03-13
Online:
2025-01-25
Published:
2025-02-09
Contact:
Fengjun Zhao
E-mail:1833768499@qq.com;zhaofj@caf.ac.cn
CLC Number:
Kaida Yan,Fengjun Zhao,Liqing Si,Lifu Shu,Mingyu Wang,Weike Li,Dong Han,Xiaoxiao Li,Nuanyang Zhou. Research Progress on Forest Firebreaks and Firebreak Systems[J]. Scientia Silvae Sinicae, 2025, 61(1): 197-208.
Table 1
Management methods of combustible materials within firebreaks in southern European countries"
国家 Country | 防火线 Firebreak construction | 可燃物 阻隔带 Fuelbreak construction | 人工清理道路旁的 可燃物 Manual clearance around roads | 机械清理道路旁的 可燃物 Mechanical clearance around roads | 通过放牧降低可燃物 载量 Grazing of cattle, sheep or goats | 通过计划烧除清理 可燃物 Prescribed burning for fuel reduction | 牧场管理人员为放牧进行的烧除 Burning for grazing by shepherds | 造林措施 Silvicultural treatments | 电力电路下可燃物清理 Clearance under powerlines |
法国 France | R | R | R | R | I | I | I | I | R |
希腊 Greece | R | I | R | I | R | N | R | E | R |
意大利 Italy | I | R | R | R | N | N-E | N | R-I | R |
葡萄牙 Portugal | R | I | I | R | R | E | R | I | R |
西班牙 Spain | R | R | R | R | R | I | R | I | R |
薄颖生, 韩恩贤, 韩 刚. 生物防火林带树种选择指标初探. 陕西林业科技, 1997, (4): 43- 46. | |
Bo Y S, Han E X, Han G. A preliminary study on the selection indicators of tree species in biological fire prevention forest belts. Shaanxi Forest Science and Technology, 1997, (4): 43- 46. | |
陈 劭. 2008. 林火扑救优效组合技术研究. 北京: 北京林业大学. | |
Chen S. 2008. Study on the combination technology of superior and effective forest fire fighting. Beijing: Beijing Forestry University. [in Chinese] | |
邓湘雯, 康文星, 文定元, 等. 山脊防火林带有效结构的研究. 火灾科学, 2004, (4): 214- 218,200.
doi: 10.3969/j.issn.1004-5309.2004.04.003 |
|
Deng X W, Kang W X, Wen D Y, et al. Effective structure of the firebreak tree belt in the ridge of a mountain. Fire Safety Science, 2004, (4): 214- 218,200.
doi: 10.3969/j.issn.1004-5309.2004.04.003 |
|
范繁荣. 2014. 森林防火实务. 北京: 中国林业出版社. | |
Fan F R. 2014. Forest fire prevention practice. Beijing: China Forestry Publishing House. [in Chinese] | |
范书杰, 董树国, 张晓阔. 防火树种选择和防火林带营造技术初探. 河北林果研究, 2012, 27 (4): 408- 410.
doi: 10.3969/j.issn.1007-4961.2012.04.013 |
|
Fan S J, Dong S G, Zhang X K. Preliminary study on tree species selection for fire protection and afforestation technique of fire prevention and forest. Hebei Journal of Forestry and Orchard Research, 2012, 27 (4): 408- 410.
doi: 10.3969/j.issn.1007-4961.2012.04.013 |
|
高仲亮, 李 智, 魏建珩, 等. 基于PyroSim的林区道路防火阻隔功能研究. 北京林业大学学报, 2020, 42 (9): 51- 60.
doi: 10.12171/j.1000-1522.20200140 |
|
Gao Z L, Li Z, Wei J H, et al. Study on forest road of fireproof blockade functions based on PyroSim. Journal of Beijing Forestry University, 2020, 42 (9): 51- 60.
doi: 10.12171/j.1000-1522.20200140 |
|
顾汪明, 卢泽洋, 黄春良, 等. 云南省建水县防火树种筛选研究. 北京林业大学学报, 2020, 42 (2): 49- 60.
doi: 10.12171/j.1000-1522.20180378 |
|
Gu W M, Lu Z Y, Huang C L, et al. Screening study of fire resistant tree species in Jianshui County, Yunnan Province of southwestern China. Journal of Beijing Forestry University, 2020, 42 (2): 49- 60.
doi: 10.12171/j.1000-1522.20180378 |
|
国家林业局森林防火办公室. 2003. 中国生物防火林带建设. 北京: 中国林业出版社. | |
Forest Fire Management Office of the State Forestry Administration. 2003. The construction of fuelbreak in China. Beijing: China Forestry Publishing House. [in Chinese] | |
洪长福. 免修、半免修复层防火林带阻火机理研究. 林业科学研究, 2007, 20 (6): 859- 863.
doi: 10.3321/j.issn:1001-1498.2007.06.020 |
|
Hong C F. Fire retardant mechanism of the non-managed and partly managed multi-layer firebreak forests. Forest Research, 2007, 20 (6): 859- 863.
doi: 10.3321/j.issn:1001-1498.2007.06.020 |
|
林其钊, 寇晓军, 王清安, 等. 基础研究与林火实践. 火灾科学, 1998, (3): 29- 34. | |
Lin Q Z, Dou X J, Wang Q A, et al. Basic research and practice of forest fire. Fire Safety Science, 1998, (3): 29- 34. | |
刘爱荣, 吴德友, 陈先刚. 木荷防火林带阻隔林火蔓延机理的初探. 森林防火, 1994, (2): 37- 39. | |
Liu A R, Wu D Y, Chen X G. A preliminary study on the mechanism of Schima superba fire prevention forest belt blocking the spread of forest fires. Forest Fire Prevention, 1994, (2): 37- 39. | |
刘广菊, 孙清芳, 李云红, 等. 改培型生物防火林带阻隔体系防火效果评价体系构建. 东北林业大学学报, 2012, 40 (4): 106- 109.
doi: 10.3969/j.issn.1000-5382.2012.04.026 |
|
Liu G J, Sun Q F, Li Y H, et al. Construction of evaluation system for fireproof effect of biological fire belt by transformed cultivation. Journal of Northeast Forestry University, 2012, 40 (4): 106- 109.
doi: 10.3969/j.issn.1000-5382.2012.04.026 |
|
舒立福, 田晓瑞, 林其昭. 1999a. 防火林带的理论与应用. 东北林业大学学报, 27(3): 71−75. | |
Shu L F, Tian X R, Lin Q Z. 1999a. The theory and application of fire-resistant forest belts. Journal of Northeast Forestry University, 27(3): 71−75. [in Chinese] | |
舒立福, 杜永胜. 1999b. 国外林火管理简介. 哈尔滨: 东北林业大学出版社. | |
Shu L F, Du Y S. 1999b. Brief introduction of forest fire management abroad. Harbin: Northeast Forestry University Press. [in Chinese] | |
孙思琦, 瓮岳太, 邸雪颖, 等. 纤维素高效降解真菌的筛选及其降解森林地表可燃物的效果. 林业科学, 2020, 56 (8): 89- 97.
doi: 10.11707/j.1001-7488.20200811 |
|
Sun S Q, Wen Y T, Di X Y, et al. Screening of efficient cellulose-degrading fungi and their effects on degradation of forest surface fuel. Scientia Silvae Science, 2020, 56 (8): 89- 97.
doi: 10.11707/j.1001-7488.20200811 |
|
孙永明, 魏 立, 刘随存, 等. 生物防火林带有效宽度和结构研究. 西北林学院学报, 2013, 28 (5): 139- 142.
doi: 10.3969/j.issn.1001-7461.2013.05.27 |
|
Sun Y M, Wei L, Liu S C, et al. Effective structure and width of the biological firebreak belt. Journal of Northwest Forestry University, 2013, 28 (5): 139- 142.
doi: 10.3969/j.issn.1001-7461.2013.05.27 |
|
谭文雄, 徐高福. 生物防火林带研究现状与建设展望. 防护林科技, 2006, (3): 87- 89. | |
Tan X W, Xu G F. Research status and construction prospects of biological firebreaks. Protection Forest Science and Technology, 2006, (3): 87- 89. | |
唐炳祥. 2023. 基于RS和GIS的泰山林火阻隔带选线规划研究. 泰安: 山东农业大学. | |
Tang B X. 2023. Study on route selection planning of forest fire barrier zone in Taishan Mountain based on RS and GIS. Tai’an: Shandong Agricultural University. [in Chinese] | |
唐抒圆, 尹赛男, 单延龙, 等. 东北林区地下火扑救实用技术. 林业科技通讯, 2021, (3): 49- 52. | |
Tang S Y, Yi S N, Shan Y L, et al. Underground fire fighting practical technology in the Northeast China forest area. Forest Science and Technology, 2021, (3): 49- 52. | |
田晓瑞, 刘 涛. 生物防火的研究与应用. 世界林业研究, 1997, (1): 23- 30. | |
Tian X R, Liu T. Research and application of biological fire prevention. World Forestry Research, 1997, (1): 23- 30. | |
王海晖. 生物防火林带技术的科学基础和发展前景. 林业科学研究, 2015, 28 (5): 731- 738.
doi: 10.3969/j.issn.1001-1498.2015.05.020 |
|
Wang H H. Scientific basis and prospects of biological fire-prevention-belt technique. Forest Research, 2015, 28 (5): 731- 738.
doi: 10.3969/j.issn.1001-1498.2015.05.020 |
|
王 辉, 谢永生, 程积民, 等. 基于生态位理论的典型草原铁杆蒿种群化感作用. 应用生态学报, 2012, 23 (3): 673- 678. | |
Wang H, Xie Y S, Cheng J M, et al. Allelopathic effects of Artemisia sacrorum population in typical steppe based on niche theory. Chinese Journal of Applied Ecology, 2012, 23 (3): 673- 678. | |
王明玉, 杜建华, 周荣伍, 等. 华北地区森林公园防火林带空间布局与树种配置——以北京西山为例. 安徽农业科学, 2013, 41 (36): 13940- 13942.
doi: 10.3969/j.issn.0517-6611.2013.36.048 |
|
Wang M Y, Du J H, Zhou R W, et al. Spatial layout and tree species arrangement of shaded fuelbreak in forest park of northern China: a case study of Xishan in Beijing. Journal of Anhui Agricultural Sciences, 2013, 41 (36): 13940- 13942.
doi: 10.3969/j.issn.0517-6611.2013.36.048 |
|
王明玉, 周荣伍, 赵凤君, 等. 北京西山森林潜在火行为及防火林带有效宽度分布研究. 火灾科学, 2008, (4): 209- 215.
doi: 10.3969/j.issn.1004-5309.2008.04.002 |
|
Wang M Y, Zhou R W, Zhao F J, et al. Potential fire behavior and distribution of effective width of shaded fuelbreak in Xishan of Beijing. Fire Safety Science, 2008, (4): 209- 215.
doi: 10.3969/j.issn.1004-5309.2008.04.002 |
|
韦龙斌, 巨文珍, 黄道京, 等. 广西中越边境生物防火林带布局与规划. 林业勘查设计, 2018, (1): 82- 84.
doi: 10.3969/j.issn.1673-4505.2018.01.039 |
|
Wei L B, Ju W Z, Huang D J, et al. Layout and planning of biological fire break forest belt in the Sino-Vietnamese Border area Guangxi. Forestry Prospect and Desing, 2018, (1): 82- 84.
doi: 10.3969/j.issn.1673-4505.2018.01.039 |
|
肖化顺, 刘发林, 向顺常, 等. 马尾松群落防火林带有效宽度模型研究. 西北林学院学报, 2008, 23 (1): 134- 137. | |
Xiao H S, Liu F L, Xiang S C, et al. Effective width model of fire-preventing forest belts for Pinus massoniana. Journal of Northwest Forestry University, 2008, 23 (1): 134- 137. | |
徐 明, 王伟伟, 李沛峰, 等. 防火林带景观树种枯落物的高效降解真菌筛选及效果评估. 林业科学研究, 2023, 36 (1): 132- 137. | |
Xu M, Wang W W, Li P F, et al. Selection of high efficient fungi for litter degradation in firebreak belt. Forest Research, 2023, 36 (1): 132- 137. | |
袁 硕, 李 超, 陈 昊, 等. 福建省将乐县生物防火林带阻隔网空间布局与规划. 北京林业大学学报, 2020, 42 (5): 88- 95.
doi: 10.12171/j.1000-1522.20190365 |
|
Yuan S, Li C, Chen H, et al. Spatial layout of biological fuelbreaks in Jiangle County, Fujian Province of eastern China. Journal of Beijing Forestry University, 2020, 42 (5): 88- 95.
doi: 10.12171/j.1000-1522.20190365 |
|
张海燕. 南方防火树种选择及其育苗造林技术研究概况. 华东森林经理, 2008, 22 (1): 18- 23.
doi: 10.3969/j.issn.1004-7743.2008.01.005 |
|
Zhang H Y. A study situation about fire-resistance tree species in the south of China. East China Forest Management, 2008, 22 (1): 18- 23.
doi: 10.3969/j.issn.1004-7743.2008.01.005 |
|
张家来, 辜忠春, 曾祥福, 等. 湖北乔灌复层防火林带模式研究. 湖北林业科技, 2005, (3): 18- 21.
doi: 10.3969/j.issn.1004-3020.2005.03.006 |
|
Zhang J L, Gu Z C, Zeng X F, et al. Study on model of multi-storied firebreak zone of tree and shrub in Hubei. Hubei Forestry Science and Technology, 2005, (3): 18- 21.
doi: 10.3969/j.issn.1004-3020.2005.03.006 |
|
赵 洁. 2009. 浙江地区生物防火林带评价及营建技术研究. 杭州: 浙江林学院. | |
Zhao J. 2009. Study on appraise and afforestation technique of biological fire belt in Zhejiang area. Hangzhou: Zhejiang A & F University. [in Chinese] | |
郑焕能. 1990. 综合森林防火体系. 哈尔滨: 东北林业大学出版社. | |
Zheng H N. 1990. Comprehensive forest fire prevention system. Harbin: Northeast Forestry University Press. [in Chinese] | |
郑焕能, 杨长职. 2001. 植物阻火. 哈尔滨: 东北林业大学出版社. | |
Zheng H N, Yang C Z. 2001. Fire-retardant plants. Harbin: Northeast Forestry University Press. [in Chinese] | |
김동현. 2010. 복사열전달 수치해석을 통한 지표화 방화선 구축 폭 산정에 관한 연구. 한국방재학회논문집, 10(6): 59−64. | |
Kim D H. 2010. Study on mathematical method of radiation heat transfer for estimating width of firebreak in surface fire. Journal of Korean Disaster Prevention Society, 10(6): 59−64. [in Korean] | |
Agee J K, Bahro B, Finney M A, et al. The use of shaded fuelbreaks in landscape fire management. Forest Ecology and Management, 2000, 127 (1/2/3): 55- 66. | |
Akay A E, Bilici E, Bilici E, et al. 2022. How forest road reengineering improves the effectiveness of firefighting activities? Corvallis: COFE-FORMEC-IUFRO 2022-one big family-shaping our future together, 152−159. | |
Aparício B A, Alcasena F, Ager A, et al. Assessing the benefits of a national fuel break network to reduce wildfire exposure in Portugal. Environmental Sciences Proceedings, 2022, 17 (1): 67. | |
Arabatzis G, Kolkos G, Stergiadou A, et al. Optimal allocation of water reservoirs for sustainable wildfire prevention planning via AHP-TOPSIS and forest road network analysis. Sustainability, 2024, 16 (2): 936.
doi: 10.3390/su16020936 |
|
Arimura G I, Shiojiri K, Karban R. Acquired immunity to herbivory and allelopathy caused by airborne plant emissions. Phytochemistry, 2010, 71 (14/15): 1642- 1649. | |
Ascoli D, Russo L, Giannino F, et al. 2020. Encyclopedia of wildfires and wildland-urban interface (WUI) fires. Cham: Springer International Publishing. | |
Bellemare L O, Porterie B, Loraud J C. On the prediction of firebreak efficiency. Combustion Science and Technology, 2001, 163 (1): 131- 176.
doi: 10.1080/00102200108952154 |
|
Bidwell T G, Weir J R, Carlson J D, et al. 2021. Using prescribed fire in Oklahoma. Oklahoma: Cooperative Extension Service. | |
Coen J. Some requirements for simulating wildland fire behavior using insight from coupled weather—wildland fire models. Fire, 2018, 1 (1): 6.
doi: 10.3390/fire1010006 |
|
Brou A D V. Numerical study of the effectiveness of a firebreak in a savanna area and the sizing rules by an optimised fire propagation model. Fire, 2022, 5 (5): 156.
doi: 10.3390/fire5050156 |
|
Cruz M G, Gould J. 2009. Field-based fire behaviour research: past and future roles. Cairns, QLD: proceedings of the 18th world IMACS congress and MODSIM09 international congress on modelling and simulation, 13−17. | |
Curran T J, Perry G L W, Wyse S V, et al. Managing fire and biodiversity in the wildland-urban interface: a role for green firebreaks. Fire, 2018, 1 (1): 3. | |
De Montgolfier J. 1989. GuideTechnique du forestier méditerranéen français. Lille: Irstea. | |
Fabiano F, Marchi E. 1991. Pianificazione della viabilità forestale. Brasimome: esperienze e prospettive per la pianificazione forestale, 14−15. | |
Frangieh N, Accary G, Rossi J L, et al. Fuelbreak effectiveness against wind-driven and plume-dominated fires: a 3D numerical study. Fire Safety Journal, 2021, 124, 103383.
doi: 10.1016/j.firesaf.2021.103383 |
|
Graham-Eagle J. Halting combustion waves with a fire break. Journal of Mathematical Analysis and Applications, 2008, 348 (1): 116- 121.
doi: 10.1016/j.jmaa.2008.07.015 |
|
Khan N, Moinuddin K. The role of heat flux in an idealised firebreak built in surface and crown fires. Atmosphere, 2021, 12 (11): 1395.
doi: 10.3390/atmos12111395 |
|
Lin S R, Liu Y H, Huang X Y. How to build a firebreak to stop smouldering peat fire: insights from a laboratory-scale study. International Journal of Wildland Fire, 2021, 30 (6): 454- 461.
doi: 10.1071/WF20155 |
|
Morvan D. Numerical study of the behaviour of a surface fire propagating through a firebreak built in a Mediterranean shrub layer. Fire Safety Journal, 2015, 71, 34- 48.
doi: 10.1016/j.firesaf.2014.11.012 |
|
Oliveira T M, Barros A M G, Ager A A, et al. Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission. International Journal of Wildland Fire, 2016, 25 (6): 619- 632.
doi: 10.1071/WF15146 |
|
Perminov V A, Marzaeva V I. Mathematical modeling of crown forest fire spread in the presence of fire breaks and barriers of finite size. Combustion, Explosion, and Shock Waves, 2020, 56 (3): 332- 343. | |
Pimont F, Dupuy J L, Linn R R, et al. Validation of FIRETEC wind-flows over a canopy and a fuel-break. International Journal of Wildland Fire, 2009, 18 (7): 775- 790.
doi: 10.1071/WF07130 |
|
Podolskaia E, Kovganko K, Ershov D. 2019. Regional geoinformation modeling of ground access to the forest fires in Russia// Popovich V, Thill J C, Schrenk M, et al. Advances in geographic information science. Cham: Springer International Publishing, 155−165. | |
Potočnik I, Hribernik B, Nevečerel H, et al. 2015.Maintenance of forest roads: the need for sustainable forest management. Zalesina: forest engineering-current situation and future challenges, 5−8. | |
Price O F, Edwards A C, Russell-Smith J. Efficacy of permanent firebreaks and aerial prescribed burning in western Arnhem Land, Northern Territory, Australia. International Journal of Wildland Fire, 2007, 16 (3): 295- 305.
doi: 10.1071/WF06039 |
|
Psilovikos T A, Doukas K G. 2011. The contribution of forest roads to the forest fire protection. Orestiada: pushing the boundaries with research and innovation in forest engineering, 1−13. | |
Reinhardt E D, Keane R E, Calkin D E, et al. Objectives and considerations for wildland fuel treatment in forested ecosystems of the interior western United States. Forest Ecology and Management, 2008, 256 (12): 1997- 2006.
doi: 10.1016/j.foreco.2008.09.016 |
|
Stratton R D. Assessing the effectiveness of landscape fuel treatments on fire growth and behavior. Journal of Forestry, 2004, 102 (7): 32- 40.
doi: 10.1093/jof/102.7.32 |
|
Suffling R, Grant A, Feick R. Modeling prescribed burns to serve as regional firebreaks to allow wildfire activity in protected areas. Forest Ecology and Management, 2008, 256 (11): 1815- 1824.
doi: 10.1016/j.foreco.2008.06.043 |
|
Sullivan A L. Wildland surface fire spread modelling, 1990—2007.1: physical and quasi-physical models. International Journal of Wildland Fire, 2009a, 18 (4): 349- 368.
doi: 10.1071/WF06143 |
|
Sullivan A L. Wildland surface fire spread modelling, 1990—2007.2: empirical and quasi-empirical models. International Journal of Wildland Fire, 2009b, 18 (4): 369- 386.
doi: 10.1071/WF06142 |
|
Sullivan A L. Wildland surface fire spread modelling, 1990—2007.3: simulation and mathematical analogue models. International Journal of Wildland Fire, 2009c, 18 (4): 387- 403.
doi: 10.1071/WF06144 |
|
Syphard A D, Keeley J E, Brennan T J. Comparing the role of fuel breaks across southern California national forests. Forest Ecology and Management, 2011, 261 (11): 2038- 2048.
doi: 10.1016/j.foreco.2011.02.030 |
|
Varela E, Giergiczny M, Riera P, et al. Social preferences for fuel break management programs in Spain: a choice modelling application to prevention of forest fires. International Journal of Wildland Fire, 2014, 23 (2): 281- 289.
doi: 10.1071/WF12106 |
|
Viegas D X. 2018. Advances in forest fire research. Coimbra: Coimbra University Press. | |
Voltolina D, Cappellini G, Apuani T, et al. Pyros: a raster-vector spatial simulation model for predicting wildland surface fire spread and growth. International Journal of Wildland Fire, 2024, 33, WF22142. | |
Van Wagtendonk J W. 1996. Use of a deterministic fire growth model to test fuel treatments.California: sierra nevada ecosystem project, final report to congress, 1155−1166. | |
Wang H H, Finney M A, Song Z L, et al. Ecological techniques for wildfire mitigation: two distinct fuelbreak approaches and their fusion. Forest Ecology and Management, 2021, 495, 119376.
doi: 10.1016/j.foreco.2021.119376 |
|
Weir J R, Bidwell T G, Stevens R, et al. 2012. Firebreaks for prescribed burning. Oklahoma: Cooperative Extension Service. | |
Xanthopoulos G, Caballero D, Galante M, et al. 2006. Forest fuels management in Europe. Portland: fuels management—how to measure success: conference proceedings, 26−46. | |
Zhong M H, Fan W C, Liu T M, et al. Statistical analysis on current status of China forest fire safety. Fire Safety Journal, 2003, 38 (3): 257- 269.
doi: 10.1016/S0379-7112(02)00079-6 |
|
Zong X Z, Tian X R, Wang X L. An optimal firebreak design for the boreal forest of China. Science of the Total Environment, 2021, 781, 146822.
doi: 10.1016/j.scitotenv.2021.146822 |
[1] | Baozhong Li,Guang Yang,Jibin Ning,Hongzhou Yu. Forest Fuel Management Technologies and It’s Evaluation Methods [J]. Scientia Silvae Sinicae, 2024, 60(10): 143-153. |
[2] | Deng Xiangwen;Wen Dingyuan;Shen Chulian;He Jienan;Liu Haojian;Tang Gang. Wind Speed Distribution in the Aweather of the Firebreak Tree Belt in a Wind Tunnel Experiment [J]. Scientia Silvae Sinicae, 2005, 41(6): 114-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||